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Preface

The purpose of this thesis was to derive a set of equations
that exactly determine the scattered EM lields from a cavity in
an infinite conducting plane. The chosen approach was to use a
set of integral equations for the field components inside the
cavity and a set of integral equations for the field components
outside the cavity and couple them together at the junction. A
Green’s function with Neumann boundary conditions was used
outside the cavity. The thesis contains derivations of all! the
major equations used.

Three people gave me extensive mathematical consultation
during the preparation of the thesis and I want to thankK them for
their contributions. They are: the sponsor, Dr. Arthur
Yaghjian, without whom the singularities would not have been
properly evaluated; Lt Col Baker, one of AFIT's finest
instructors, who provided insight to several mathematical
peculiarities within the thesis; and especially my advisor, Capt
Greg Warhola, without whom this thesis may not have been
completed error free. Capt Warhola'’s hard work and dedication
and persistance upon perfection took their toll, but will always
be remembered and appreciated.

I also wish to thank my parents who were the major
contributors towards my bachelor's degree; I cculdn’t have done
this if I hadn’t earned my BSEE.

I especially want to thank the only person who gave more
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than I did toward the completion of this thesis. The sacrifices

and understanding my wife,

Tina,

contributed during this work are

indescribable and her support Kept me going.
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Abstract

The purpose of this thesis is to determine the scattered
electromagnetic fields and radar cross section from a two-
dimensional cavity in a perfectly electric conducting infinite
plane. This is accomplished by deriving a coupled set of
Fredholm integral equations of the second Kind. A set of
integral equations outside the cavity and a set of integral
equations inside the cavity are coupled together at the
interface. The Fredholm integral equations of the second Kind
for the outside of the cavity use a Green's function with Neumann
boundary conditions to avoid an integration over the infinite
plane for a transverse electric incident plane wave. An example
problem is introduced and numerically solved to test the

application of the newly derived equations.
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Coupled Integral Equation Solutioans for Two-Dimensional

Bistatic TE Scatter From a Conducting
Cavity-Backed Infinite Plane

I. Introduction

Electromagnetic (EM) waves exhibit the phenomena of
reflection, transmission, absorption, interference,
diffraction, and refraction (13, 11,4). In free space,
absorption, diffraction, and refraction may be ignored (i4).
With this single and precise assumption, EM energy (such as a
radar pulse) propagates through space until it impinges upon an
obstruction (such as an aircraft) in its path. The obstruction
scatters the electromagnetic wave in many directions and the
energy associated with the scattered portion of the EM wave
then propagates in new directions. Though the energy is
normally scattered in all directions, it 18 desirable to Know
the amount of energy scattered in various directions.

Solutions to this problem in the form of the scattered electric
and magnetic fields are of interest to many sectors of today’'s
society, particularly to the military (6).

It is not a trivial problem to determine the exact
solution for the scattered EM fields. The size and shape of
the obstruction must be taKen into account when solving for the
scattered fields, but these are only two of the possible
variables. The object'’'s conductivity, the incident wave's

frequency, and the permeability and permittivity of the space




surrounding the object all contribute to the solution of the
scattered fields (6).

Closed form solutions of the EM scattering problem can be
generated for only a very limited class of problems (12, 14).
For general scattering objects, however, an approximate
solution is needed to predict the scattered fields. with high
speed computer systems (or low cost personal type computers)
good numerical approximations are obtainable by solving the

full scattered field equations (i2).

The Problem

Modern jet aircraft use air intake and exhaust structures
that can appear (to the EM wave) to be open ended wave guides
or apertures. If one wishes to reduce the energy backscattered
by these apertures, it is necessary to determine both the
amount of EM energy scattered by them and the directions 1nto
which the energy is scattered. This thesis maKes another step
toward understanding this three-dimensional problem by
determining the solution to a corresponding, but simpler, two-
dimensional problem (26). One benefit from solving this
simpler problem is the two-dimensional problem can be used to
approximate the scattering from gaps and cracks 1n panels that
comprise reflector antennas and radar targets.

The associated two-dimensional model of the problem that
will be solved in this thesis is the determination of the
bistatic EM fields scattered from an infinite plane containing

a cavity (26). For example, 1f in three dimensions the




infinite plane is the Xz plane and the coordinate axes are
placed as in Figure i1, then the cross-sectional shape of the
cavity is constant along the z-axis. This 1s the specific
problem ultimately considered in this thesis.

Integral equations can be derived to describe the
electromagnetic fields scattered in a problem of this type.
These equations are developed in this thesis. Once derived,
computer software will be described which numerically
implements this formulation. In particular, predictions for
two-dimensional scattering from an infinite plane contailning a

rectangular shaped cavity will be obtained.

Scope of the Problem

It is desired to determine the EM fields scattered from a
perfectly electric conducting infinite plane containing a
cavity of arbitrary cross section (i.e. a generic cavity).
Surface integral equations have been derived by Stratton,

Poggio and Miller and others (21, 15, 23, 24) that provide for

the solution of scattered fields from objects of finite size
using a free space Green's function as the Kernel. To avoid
integrations over the unbounded infinite plane, Green'’'s
functions which satisfy Dirichlet boundary conditions (the
Gre:n's function vanishes at the boundary) or Neumann boundary
conditions (the normal derivative of the Green's function
vanishes at the boundary) can be employed.

The integral equations using a Green's function with

Neumann boundary equations will be derived and used in thais



thes1s. Once derived, these equations will be used to solve an

example problem: a two dimensional rectangular cavity.

Cavity"

Figure 1. Cross Sectional View of a Generic Cavity in an
Infinite Plane Closed at Infinijity.




Assumptions

The problem is simplified by assuming that the infinite
plane is a perfect electric conductor (i.e. the conductivity of
the plane is infinite). The plane is suspended in free space
where the incident wave will not be impeded (i.e. the relative
permeability, pp, and the reiative permittivity, €, are
both equal to one, ppr = €0 = 1). Though a perfect
conductor of this type does not actually exist, the
mathematical assumption of a PEC (perfect electric conductor)
is a good approximation and the amount of work involved in
assuming the material 1i1s not perfect is considerably more
difficult (6),.

The assumption that the relative permeability and
permittivity are exactly equal to one means that the medium
through which the EM wave propagates does not impede the wave
(14). In actuality, €, for air is approximately 1.0006 at
atmospheric pressure and 24°C (11:58) and wp for air is
approximately 1.0000004 at the same conditions (11:21i6). Since
both €, and y, are functions of temperature, pressure, and
material, they will be functions of position in space. It is
not possible to determine the exact permittivity and
permeability for all places at all times but it is Known that
for air, they will be very close to one (14).

One final assumption for solving this problem is that the
source of EM waves is far enough away that the wave front is

planar as it impinges upon the plane.

(




Approach

The general geometry initially considered in this problem
is a three dimensional generic cavity in a PEC (perfectly
electrically conducting) infinite plane (see Figure 1), Within
the thesis the specific geometry of a two-dimensional
rectangular channel is introduced as the cavity, the integral
equations inside and outside of the cavity are then solved to
produce the fields scattered from the channel. For purposes of
derivation, the cavity will be considered generic. The chosen
approach to solving this problem is to separate the upper half
space from the cavity and allow the two regions to be coupled
at their common boundary, hereafter referred to as the
*aperture". This method was introduced by Harrington and Mautz
in 1976 and lends itself well to this type of problem (5).

By considering the scatterer to be a PEC plane with a
cavity, two sets of equations need to be derived: one set for
the half space above the PEC plane and one set for the cavity.
The first step used to solve this problem was to derive from
Maxwell's Equations a set of integral equations needed to
determine currents (field components) in the aperture and along
the cavity walls. From the currents, the scattered fields are
obtained by an integration. An integral equation formulation
was used because it reduces, by one dimension, the
dimensionality of the problem and represents an exact solution.

Other theoretical approaches such as physical optics,




geometrical optics, and the geometrical theory of diffraction,
etc., require major analytic approximations (6,7,18,19).

Once the integral equations are derived, a computer
program is introduced that solves the equations for the unKnown
magnetic surface current density, M, from various aspect angles
and scattered angles. With the magnetic surface current
density in hand, the scattered fields are then determined by an
integration of M. An equation for the RCS (radar cross
section) is then derived and evaluated to determine the RCS of
the channel.

With the integral equation formulation and the computer
program, data is generated and plotted to show the RCS as a
function of several variables for a representative chosen
geometry: that of a two-dimensional rectangular cavity. The
AFIT computer facilities were used to run the computer program.
A personal computer was used to plot the data generated from
the computer program.

Before preceding to the development of the equations, a

summarization of the current Knowledge is necessary.

Summary of Current Knowledge

Integral equations for finding the electric and magnetic
fields scattered from a three-dimensional object have been
derived and used for several problems. Two of ti.e wust noiable
derivations are by J.A. Stratton (20) and Poggio and Miller

(15). These equations are normally called the Electric Field




Integral Equation (EFIE) and the Magnetic Flield Integral
Equation (MFIE) (19).

In three dimensions, both the EFIE and the MFIE contain a
singular kernel in convergent integrals; however the MFIE is
normally more numerically stable and slightly less complicated
to implement (22). For open conductors such as an antenna
aperture, the MFIE becomes degenerate and the EFIE is normally
used. In the early 1980's the EFIE and the MFIE were combined
or augmented to eliminate spurious resonances which can pollute
the solution of an exterior scattering problem (24, 23). These
integral equations may be used to determine the scattered EM
fields for many types of problems.

It has been possible to determine the scattered fields
from some of the simplest geometries since just after the
introduction of Maxwell's electromagnetic field equations (11).
Only recently, high speed computers have allowed the use of the
MFIE and EFIE to determine the fields scattered from more
complicated geometries (12:2). Several computer codes have
been written using the MFIE or EFIE to help determine the
filelds scattered from some specific geometries (6). Using
these codes, the scattered fields from several geometries have
been determined. Most of these are simple three dimensional
bodies. The open literature does not provide any solutions to
most of the more complex shapes. Some representations of
scattered flilelds that have been obtalned using surface integral

equations are:




1) The perfectly conducting cube for monostatic
scattering using both the MFIE and the EFIE (25).

LY

2) An infinitely long, perfectly conducting circular
cylinder for monostatic scattering using both the EFIE and
the MFIE (21).

3) An infinite perfectly conducting half plane with short
"bumps" (16) for monostatic scattering and using only the
EFIE.

4) Various generic targets within stratified media (as
opposel to free space) using only the MFIE (17).

5) Perfectly conducting bodies of revolution using bct
the EFIE and the MFIE in the monostatic case (8).

In order to use the MFIE or EFIE in our stated problem of
interest, either an integration on an unbounded domain is
necessary or else an approximation must be made by truncating
the plane at some finite distance from the cavity. The
necessary approximation is not considered valid in an "exact"
solution. Therefore, a set of equations are derived herein
that avoids the unbounded domain without the use of an

approximation.

Preview

A coupled set of Fredholm integral equations of the second
Kind are derived in Chapter 2. Once obtained, these integral
equations will be simplified in Chapter 3 by reducing them to
two-dimensional space and providing a specific incident
field. Chapter 4 provides a way to solve the coupled set of
Fredholm integral equations numerically; the Method of Moments

i8 used. In Chapter 5, a specific cavity is introduced to test




the equations. The speclfic cavity 1s a two-dimensional
rectangular channel. A convenient representation of the
scattered fields is the RCS (radar cross section) and an
equation for RCS is derived in Chapter 6. Chapter 7 provides a
quick description of the computer program used to approximate
the equations derived in Chapters 2 and 3 to determine the RCS
derived in Chapter 6. Chapter 8 glves the results of the
tested cavity and Chapter 9 gives the overall concluslons and
recommendations for future work. Three appendices are included
at the end of the thesis. Appendix A contains the computer
program written to numerically solve the integral equations and
eventually determine the RCS from the test (rectangular)
cavity. Appendix B consists of some of the output from running
the computer program. A description of a model designed and
built to further test the equations by making laboratory
measurements of the scattered fields is in Appendix C.

The first major step, however is to derive the coupled set
of Fredholm integral equations needed to solve for the surface
currents and charges, and this is the subject of the next

chapter.
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II. Derivation of the Integral Equations

The Upper Half Space Region

The propagation of electromagnetic energy and the
fundamental laws of electromagnetics are governed by Maxwell's
equations (4,11, 14,20). To determine the magnetic and electric
fields at any point x = (x,Y,2) at a time, t, one may begin
with Maxwell's equations and derive a more useful set of
equations for the particular problem being considered (20).

For chis reason, the integral equations used to solve the
stated problem will be derived from Maxwell's equations.

In time harmonic form with exp(-iwt) time dependence,

Maxwell's equations are (11:376):

x
Im
"

lwpH - I (1)

*
ha

~iweE + J (2)

p/E (3)

4 49 4 4
im

e o

Pm/ ¥ (4)
where

Electric Field Vector

Magnetic Field Vector

Magnetic Current Volume Density
Electric Current Volume Density
Operating Angular Frequency
permeability of the medium
permittivity of the medium
Electric Charge Volume Density
m - Magnetic Charge Volume Density

i " "on n " "

O MmMT € IG—~ixIm
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All of the fields (E and H), currents (I and J), and
charges (p and pp) in Eqs (1) through (4) are functions
of position (i.e. EzE(Xx,y,2z):=E(x), H=H(x,y, z):=H(x), etc.) For
simplicity, the position variables will not be indicated until
1t 18 necessary to distinguish between separate positions in
space.

At this point it should be noted that the magnetic
current, I, and the magnetic charge, Pm»+ are fictitious
quantities that can exist mathematically, but have not yet been
physically measured. The electric and magnetic fields in Egs
(1) through (4) are considered generated from the sources J, I,
Pm+ and p. The continuity equations relating currents

and charges of Eqs (1) through (4) are (20:464):

vV J = iwp (3)
and

V1= iwpy (6)
Taking the curl of Eq (1) yields
Vx VxXxE:= iwp(VxH) -VxI (7)

Using Eq (2) in Eq (7) and simplifying the result gives an

equation for the electric field without the magnetic field.

VxVXxE-KE =ziwpJ -9 x1 (8)
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Similar)ly for the magnetic field,
VXVxH-K HG:iwel-VxJ (9)

An application of a vector Green's identity with the
proper Kernel (or Green’s Function) will yield two integral
representations of the electric and magnetic flields in terms of
volume and surface currents and charge densities. From these,
integral equations are derived to obtain the surface current
and charge densities. The vector analog to the scaler Green's

second identity is (20: 464):

Ifj (@ VXVxP-P+ VXxVxaQ)dv

\'4

=ff(£xVxQ-ngxg)~ﬁds (10)

where N is the unit normal pointing out of a regular region, V,
bounded by the surface, S. Eq (10) is valid for any vector
functions of position P and @ having the proper regularity.
Both P and Q need to be twice continuously differentiable on
the surface anq within the volume being considered (15:161).
For the vector P, either E or H is chosen. Choosing the
most advantageous vector Q depends upon the geometry being
considered. A generic closed surface in free space lends

itself well to the free space Green's function for Q.

13




That 1is:

Q= 3(x:x') 4 (11)
where
exp(ikr)
P(x;x') = —mm——— (12)
r
rs]x x|
1/2
= [(x-x*)a + (y-y")% + (z—z')a] (13)
i- arbitrary unit vector
The unit vector, 3, is arbitrary for two reasons: the free

space Green's function i1s omnidirectional and the vector is
common to all of the elements in Eq (10) (20:251-252). For the
half space above the PEC plane, the vector Q is chosen to be

the half space Green's function:

Q= G(x;x') 4 + Q(x;X') 4 = G(x;x') & (14)

where

h?

(x*,-y*',2') (15)

and §(x;x') is as defined in Eq (12).

14




Using Eq (14) for Q@ and E(x) for P in Eq (10) yields:

”[g(g’) X V! x G(X;Xx’)d - G(x;x')a x V' x E(x') ]-ﬁ(_:g’) ds’

S
(16)

in which V! represents differentiation with respect to 5’.

From Maxwell'’'s equations, V'x E is Known as a function of
E and } and Eq (8) gives V'x V'x E; the only other expressions
that need to be analyzed are V'x G(x;X')a and V'x V' x G(x;x’')a.

From basic vector identities:

V'x [G(x;x')3) = V' [G(x;x')) x & (17)
and |

Vix V'x G(x;x')3d = V[V’ (G(x;x?)a))- V'@ [G(x;x')3) (18)

Dealing strictly with Eq (17) and the integrand in the

left side of Eq (16) (recall that 2 is a constant unit vector):
[(Ex V' x (G a))'A = & [(n x E) x V'G) (19)

and

[6(5;5')3 x V'x E(x'))'fl = &+ [V'x E(x’) x fi] G(x;x’) (20)

15
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Using Eq (1) in Eq (20) for V' x E(x') and simplifying the

result yields:
A
-G(x;x')3 x vrx E(x'):f = A -iwp(f x H(x')] G(x;x’)

-3 (A x I(x')) G(xix') (21)

E m . o

' To further evaluate Eqs (i18) and (19), it is necessary to
determine V'G(x;x') and V'2G(x;x’).
I WG(Xix') G(XiX') WG(Xix')
V'G(X;X') = ——— X + ——— + —
= ax’ 2y’ Y 2z (22)
I d[exp(ikr)}/r ar ar ar
= A A A
X & y +
dr : X’ Ay’! 9z’
' d(exp(ikr)l/r ar ar ar
: - e —p + —18
ar (23)
ax' Iy’ 2’
4
Breaking Eq (23) into its prominent pieces yields:
d[exp(ikr)]/r 1
= [ik - — ] d(x;x') (24)
dr r
d[exp(ikr)}/r 1 .
- : [ik - — ] d(x:x’) (25)
dr r
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and continuing,

ar (x~-x')

_ - e—— (26)
Ix’ r

ar (z-2')

_— o — (27)
9z’ r

where,'in Eqs (26) and (27), r may replaced everywhere by r.

Continuing,

ar (y-y")
—_— = - (28)
Iy! r

and
ar (y+y')
_— = —_ {29)
ay? r

Thus, combining Eqs (24) through (29) into Eq (23) yields:

1 d(x;x')
V'G(x;x') = [ik - ] r
r r
1 3(x; X) .
+ [ ik - - ] = [2(Y+Y’) Yy - r ] (30)
r r
where
Pz X - X' = (XX'")K + (y-y')¥ + (z-2')%

= (X-X')X + (y+y')¥ + (2-2')%

=32
[1]
i
i

I

17




Similarly, without displaying all of the steps, the equation

for V'2G(x;x') is given by:

%G (x;x')  3%G(x;x’') 3%G(x;x')
V'2[G(x;x')a) = [ + + ] i
ax*e ayoa 2z
2y(x;x?) 3%3(xix') 3%3(xix')
= +
[ ax'e ay* @ * 3z e ]
323 (X k') %3(x;%')  3%J3(x;x*)
. [ . . ] H (31)
axoa 3,.2 “,a
since 2 is a constant unit vector.
Now,
23 (x;x') ar 2 a3 (x;x') 30 (x;x*) alr
i [_] [ ] . (32)
ax* e ax' ard ar ax*2

Equations for the second derivatives of {§(x;x') with respect to
y' and 2z’ and the second derivatives of 9(5;2') with respect to
X', y' and z' are all similar to Eq (32).

The component parts of Eq (32) are

r (x-x')

—_— ot e— (33)
ax!? r

alp 1 (x-x')2
_ - (34)
ax'2 r r3

18
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and
I(x; x') 1
- [ ik - — ]6(5;5’) (35)
r r
and, finally,
325 (x;x) 1 q2 3(x;x')
—_— = [ik - — ] 0(x;x') + ——— (36)
ard r ré

Putting Eqs (33) through

result gives:

3%y (x;x')
—— = 3(xiX") [-ka
axoa
+ 3
Similarly,
23 (x;x')
= J(xix’) [-k?-
ayaa
+ 3

(36) into Eq (32) and simplifying the

(x-x')2 (x-x')2
_ - 3iK
ré rd
(x-x')2 | ik
- + ] (37)
ri r2 r
(y-y')2 (y-y')2
- 3ik
rd r
(y-y')2 1 ik
- + ] (38)
ri re r
19



and
329 (x; x*) (z-2')2 (z-2')2
—_— 2 a(xiX') [-x?— —_— - 3K
3z 2 ré r3
(z-2')¢ | ik
+ 3 - + ] (39)
rt ré r

for the y' and 2z’ derivatives of §(x;x’).
The second derivatives of o(g;g’) with respect to x°', y’,
and z' are nearly identical to Eqs (37), (38), and (39)

respectively. These derivatives are:

2(xi k') . (x-x)2 (x-x*)2
—_— - B X) [—xa ~ - 3ik —
ax'2 ré r3
(x-x')¢2 1 ik
+ 3 - — ¢+ = ] (40)
r4 ré r
329 (x; X’ ) . (y+y')2 (y+y')2
= 9(x;x’) [-ka Jik —
ayna re rd
(y+y')? 1 iK
+ 3 — + ~ ] (41)
ri re r
32 (xiX*) . (z-2°)2 (z-2°)2
—_—— = 3(X;X) [-k?- 3ik
az'2 re r3
(z-2')2 | iK
+ 3 — — + ~ ] (42)
r4 re r
20




Using Eqs (37) through (42) in Eq (31) and noting that
(x-x')2 + (y-y*)2 + (2-2)2 = r2  and (x-x')2 + (y+y')2 +
(z-2') = 12, @gives the final, simple, result for V'2G(x;x')

as:

V'2G(x;x') = -kK23(x;x') - K2J(x; k') = -K2G(X;x')

for X £ x' and x £ X' (43)

Eq (43) is an important result. It allows the use of the
half space Green's function, G(x;X'), in the same equations
used by J.A. Stratton in his derivation of the electric and
magnetic field integral representations (20: 465). The Stratton
equations were developed with the free space Green's function,

3(x;X') which satisfies V' x V' x 04 = K233 + V’'(a-v'3)

(20: 465). Stratton’s results are based on this relation which
is now also satisfied by G as seen by combining Eq (43) with Eq

(18):

Vix Vix G(_)_t;)_(’)a = QKZG()_(;)_(’) + V’(a'V’G(L‘;E’)]

for x £ x' and x £/ X' (44)
Using the results given in Eq (44) and the development of

Eq (%), the two components for the right hand side of Eq (16)

can now be cast in a more useful form. In particular,
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G(x;x*)3 * V'x V'x E(x') - E(x') * V'x V'x G(x;x')a

: 3-[1wug(§’) - V'x I(x') + K2E(x') ]

- 3~[ KeE(x') - VG(x;x') [V'- E(x')) ]

+ V' E(x') [3'V'G(xix')) (45)
Eq (3) and Eq (45) are used in Eq (16) along with the

following identity:

”J (V'x I(x')) G(x;x') dv' = ”[ﬁu_:') x I(x')) G(x;x') ds’
v S
+ J” I(x') x V'G(x;x°) dv! (46)

\4

An application of the divergence theorem,

mv.gd“”g.a(!.)d,. (a7)

v S

to that result yields:

IIJ [iwug(z’)G(g;g') - [V'x 1(x'))G(x:x’)

) ” [“""[6(5’) x H(X'))G(x;x')+[A(X') x E(X')] x V'G(X;Xx")
S
+ (A(x')'E(x')} V'G(x;x’) ] ds'’ (48)
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where the common factor of the arbitrary constant vector, i has
been removed. (See Eqs (47), (45), (19), and (21).)

The integrand of Eq (48) is singular at r = 0O, (i.e.
when (x,y,2) = (x’,Y¥’,2')). This violates the conditions for
use of the vector Green'’s identity, Eq (10), unless the
singular point is excluded from the volume, V. This
singularity actually helps in the development of solvable

equations. A small sphere of radius ry is circumscribed about

Figure 2. Exclusion of the Singularity by Enclosing It Within
a Small Sphere of Radius ry.
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the point (x,y,12) (see Figure 2) to exclude this point from
V. The outward pointing normal at the surface of this sphere

points toward the center of the sphere (out of the volume) and

along the radius, ry. For points, X' on this small spherical
surface
fi(x') = r/r

An element of surface area on the sphere is
ds' = r2 3in(8)dedy

with spherical coordinate system angles 6 and J§. Using Eq (30)
for V'G(x;x’') and taKing the limit as ry shrinks to zero, the

integral over the surface of the sphere is:

a2n |
J J [ (A(x’) x E(x')} x n(x')
0 0

1 exp(ikr )
+ [(R(Xx’)-E(x'))A(x") ][ — - 1k ]—-—————l—
- - - ry

rjsin(e)dedo

r

+ 0(!‘1) (49)

which yields 4w E(x) for vanishing Ry, since

Thus, the contribution of the volume integral on the right hand

side of Eq (48) is 4w E(x) due to the volume integral about
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the singular point. The electric field at the point

X = (X,¥,2) in the half space above the scatterer is given by:

1
E(x) = — ff} [iwug(g')e(gzg') - I(x') X V'G(X;x")
v

p(x’)
+ V'G(x; x') — ] dav?
- T €

1
an jj [i””[ﬁ<;') x H(X'))G(x;x')
4w

S
+[D(x")XE(X'))XV'G(X;X') + [ﬁ(§'>~§(z')1v's(5;5’)]ds'

(50)

Note that due to the singularity, the integral over the
volume must be evaluated in the principle value sense, meaning
that a vanishingly smail spherical volume centered at x=x' must
be excluded.

With the choice of the half space Green’s function as the
Kernel in Eq (16), the resulting equation for E(Xx) when x
approaches 'the surface of the volume is the same as Eq (50),
provided the surface integral is, too, a principal value
integral. The volume integral remains unchanged since a small
sphere can always be circumscribed about the point x as it
approaches 8. For the surface integration in Eq (50), a result

due to Yaghjian (23,24) is employed:
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1im ” V'3(x;x')ds' = H V'3(x;x')ds’ + 2mi(x') (50a)
X—=S8

S S
where the + (~) sign corresponds to approaching S from the side
into (out of) which 6(5) points and the principal value
integral employs a vanishingly small circular patch. For the
half space Green's function, G(X;x'), contributions with both
signs cancel, leaving Eq (50) intact for x approaching S, with
all integrals evaluated in the p:rincipal value sense.

A similar procedure may be used to fiud an equation for
the magnetic field, H(x), where H(x') is used for the P vector
of Eq (10); an equation similar to Eq (50) may be developed. A
decidedly simpler procedure is to use the concept of duality
with Eq (50) (4). Based on the symmetry of Maxwell's

Equations, Table I shows the quantities to be interchanged from

Eq (50) to get an equation for H(x).

Table 1. Duality Variable Interchanges

Quantities =]

From To
E(x)

(4: 98; 99)
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Using Table i, the H(x) equation becomes:

1
H(x) = — {}} [inJ(g’)G(g;g’) + J(x') x V'G(x;x"’)
4" t

P (x") 1
+ V'G(x;x') —B—0o ] dv' + — [iwe[ﬁ(z’) x E(x’))G(X;Xx’)
4y

s

-[A(x)XH(X' )XV G(x;X*) - [ﬁ(s’)-3(5’)17’6(5;5’)]d3’ (51)

Egqs (50) and (51) may be further simplified in certain
problems by noting that the volume integrals yield an incident

ffeld for a scattering problem and by defining surface current

densities,

and op(x’);

K(x') and M(x'),

and surface charge densities,

o(x')

based on the outward pointing normal for each

region considered:

E(x') = fi(x') x H(x') (52)
M(x') = fi(x') x E(x') (53)
om(x')/v = A(x') * H(x') (54)
a(x')/e = n(x') + E(x') (55)
Using the simplifications noted above leaves:
-1
E(x)- ———‘ﬁf [ iwpK(x’')G(Xx; xX’') + M(x') x V'G(Xx;x"’)
4w
s a(x’) .
+ —v'G(_’S;.’S’) ] ds' + glnC(E)
€
X not on S (56)
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and

1
H(x): — Jf [ lweM(x') G(x;x’) - K(X’) x V'G(x;x')
]

4w
o (x')
- m V’G()_(;_)_(’) ] ds' + glnC(,_()
1)
X not on S (57)

where the superscript "inc" indicates and incident field.

Eqs (56) and (57) are valid for all points within the volume in
the upper have space of Figure {4, When the integrals are
interpreted in the principal value sense, these equations are
also valid for points on the bounding surface. However, this
surface includes not only the plane between the upper and lower
half spaces, but also includes the semicircular "cover", Sg, of
the upper half space. Fortunately, the Sommerfeld radiation
conditions (20) makKe the integrals over S vanish. The results

for x approaching S are:

-1
E(x) = — f [ lwpK(x')G(X;x') + M(x') x V'G(x;x")
4w
S
g(x’) .
4 ——— VG(X;X) ] ds' + E!NC(x), x—=sS
€ (58)
and
1
H(x): — f [ lweM(x’) G(Xix') - K(x') x V'G(Xix"')
4w
S
o (x')
- m__ V’G()_(;)_(’) ] ds’' + ginC(r). )_("’S
7] (59)
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Eqs (56) through (59) are the equations which represent

the total electric or magnetic field at any point inside or on
the surface of the upper half space of Figure { in terms of the
surface charges, o and op, and the surface currents, K(x') and
M(x'). To find these currents and charges, equations must be

developed to find the fields, currents, and charges inside the
cavity of Figure 1 because the two spaces are coupled together
at the interface between the surface. Recall, this interface

has been named the aperture.

Ingside the Cavity

Ingside the cavity, the free space Green's function in the
3 direction may be used for @ (20) and E or ¥ used for P in Eq
(10). The volume in the integral is the volume of the cavity
and the =urface is the surface of the cavity. Again, no
sources are found within the cavity and the surface currents
and charges may be modeled as they were in Eqs (52) through
(55). The fields incident to the aperture will induce surface
currents and charges across the aperture. These surface
currents and charges will generate the fields that are incident
to the cavity. In this way, the cavity is coupled to the half
space above the aperture, Using all of the above information,

the electric and magnetic fields ingide the cavity are
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-1
E(x) = jj [ LWpK (X' )0(X: X' ) + M(x') x V' 9(x:x"')
4w
S
o(x')
+ Vo(x;x') ] ds’
€
for x not on the surface, S (60)
and

1

H(x): — JJ [ iweM(x') J(x;x') - K(X') x V'0(x;x’)

4n
s

o (x')
- _mhv’o(-x—;gi)] ds’
p

for x not on the surface, S (61)

To let the observation point approach the surface S bounding

the cavity, Eq (50a) is again employed. The results are:

-1
E(x) = ff [ TR (X' )0(x; X)) + M(X') x V'Q(X;X’)
4y
S
o(x*)
+ V'a(xix') ] ds’
€
1 1 o(x)
- — M(x) x n(x) - — — n(x')
2 2 €
for xX—» S (62a)
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and

{
H(x)= ——H [ iweM(x') 0(x;x’) - K(x’') x V'3(x;x’)
4y
s

o (x')
- R VIF(X;X) ] ds'
7]

1 1 op(x)
- — K(X) x A(x) - — — n(x’')
2 2 €

for x— S (62b)

With Eqs (56) through (62) the fields at any point x can
be determined if the incident fields and the surface charges
and currents are Known. The next step in the derivation of the
integral equations, therefore, deals with finding the surface

currents and charges.

Finding the Currents and Charges

The currents and charges r2eded to use Eqs (56) through
(62) are found by the solution of a coupled set of second Kind
Fredholm integral equations which will be derived presently.
To help in the computations, Eq (62a) is multiplied by iwe.
This allows for the solution of iweM(x') instead of solving
for M(x') alone. Notice that iwe multiplied by iwp

yields -ke by Eq (8). It is also more convenient to let the

kB!




constant 1/4w be part of the Green's functions so that
9(x; Xx')/4n is referred to everywhere as J(x;x'). Also, let
Om/V, from here on, be referred to as op.

In the equations to follow, S, refers to the surface of
the cavity excluding the aperture and A refers to the aperture;
as before, S refers to the surface of the upper half plane
(which also includes the aperture). For the magnetic current
across the aperture, Eqs (53) and (62a) along with the above
simplifications yields a second Kind Fredholm integral equation
for the current M forced by integrals of the, as yet, unknown

current K and charge o:

- M(Xx') X V'{(x;x’')iwe

- iwg(x') V' o(x;x’) ] ds’ (63)
where Xx € A,

Instead of using Eq (62a), Eq (58) could be used to find
Eq (63). However, since Eq (58) is for the upper half space,
the half space Green's function would be used in place of
9(x;x') and the tangential component of the effective incident

electric field across the aperture would be added. Egq (62a) is
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chosen in place of Eq (58) since the former involves an
integration over the bounded aperture, whereas the latter
requires integration over the unbounded xz plane.

A further simplification is possible since M(x) = O when x
is on a perfect electric conductor (4:34). The cavity walls
are assumed to be PEC. Furthermore, to avoid confusion
regarding the normal used in defining quantities in Eqs (52)
through (55), the magnetic current is defined now to be

M(x') = -y x E(x'), where ¥ is the unit vector pointed in the
positive direction along the y-axis. Using this definition,
the equation for the magnetic current when X is on the aperture

becomes:

1
— iweM(x) = -ff K2 [ ¥ x E(x')0(x;x") ] ds’
2

Sc U A

- iwe f ¥ x [g(g’) X V'o(x;x’) ] dx’
A

+ f} ¥ x iwo(x') V'3(x;x’) ds’ X € A (64)
Sc U A

To find the electric current across the aperture, Eqs (52)
and (59) will be used with the current defined as

E(x') = ¥ x H(x'). The result is
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in
-
I
"
"
~>

x Binc(K) + ¥ x {F [ iweM(x')G(x; x')
S

-K(x') x V'G(x;x') - ¢ V'G(x;x') ] ds'
m

with x € A (65)

(Recall that op/p was earlier redefined as oy for simplicity of
presentation.)

Although this, too, requiresgs integration over the
unbounded xz plane, some means of coupling the incident field
into the problem must be employed. It will be explained in the
next chapter how the judicious choice of Green's function,
G(x;x'), combined with other problem specifics is employed to
eliminate the integrations over the plane.

For the electric current on the surface of the cavity

(minus the aperture), Eq (62b) is used in conjunction with Eq

(52). The equation for the electric current in the cavity
becomes:
1
- K(x) = - fi(x) x [‘iwelj(!’)o(lﬂ_(’) + E(X') x V3(xix')
2

Sc UA

+ © V’Q(x;x')] ds'
m - -

with x € 8, (66)
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To find an equation for the electric charge density on the
surface vl the cavity including the .perture, £qg (62a) is used
in conjunction with Eq (55). Since ¢ is always multiplied by
ilw in Eqs (58) through (62), it is appropriate to find an
equation for iwo. Again, M(x) = 0 when x is on the
surface of a PEC, and 6(5) is dependent upon the cavity

surface. The equation for iwo 1is:

A jwo(x) = iwe {f A(x) - [g(g') X v'o(g;g')] ds’
A

Sc U A

with x € S, U A (67)

An analogous equation for Op could be obtained from Eq
(62b) but is not listed here. Eqs (64) through (67) and the
equation for on are the necessary equations for the surface
current and charge densities. Each is a second Kind Fredholm
integral equation. The equations are coupled and may be viewed

as a linear operator, L, acting on the vector of unknowns,

I
n

(M(x), K(x), o(x), op(x)], according to LX = B, where

A .

(0, ¥ x H'"C(x), 0, 0). The operator, L, is a matrix of

o
1
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linear operators having second kind Fredhoim operators along
the di2gonal. Alternzte, simpler, formula*tions which exclud-
charge densities are possible. In one such formulation, the
resulting operator involves a first kind Fredholm operation,
inversion of which is possibly ill-posed (2). Another
formulation replaces iwo by Vg'K and iwop by -Vg'M in

which Vs is the divergence operator in the surface. These
relations follow directly from Maxwell's equations and are
commonly employed (15) when using surface integral equations.
However, the formulation herein is chosen to avoid numerical
differentiation for approximate solutions obtained in a later

chapter.
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1IT. Reduction to a Two-d‘wmensional Problem

The Tavity

For this proolem, a two-dimensional cavity (Figure 1) of
arbitrary shape is considered. Along the z-axis, the cross-
sectional shape of the cavity is constant. For such a problem,
the currents and charges, M, K, o, and op, as well as the
resulting fields, are independent of z.

This simplification eiiminates integration in the 2
direction from - to +m for the surface currents and charges.
It also allows the use of the half space Green's function 1in
two-dimensions for G(x;x') and the two-dimensional free space
Green's function for J§(x;x’'). In two-dimensions thesgse Green'’s

functions are (13):

G(x;x') = wiH{!)(kr) + wiH{!) (k) (68)
and
o(x;x*) = wiH{1) (kr) (69)
where, now
172
ro= [(x—x')‘2 + (y-y'>2] (70)
. 1/2
r o= [(x-x’)‘2 + (¥+y’)2] (71)

and

H{1) (kr) is a Hankel function of the first kind of order zero.
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Dividing Eqs (68) and (69) by 4m will help simplify Eqs (58)

through (61). Thus, the Green’s functions are now redefined to

be
i i
G(x;x') = — H{1)(kr) + — H{1) (kr) (72)
' 4
and
i
o(x;x') = — H{L) (kr) (73)
4

In two-dimensions, the surface integrals of Egs (58)
through (61) are now line integrals for finding the "surface"

currents and charges.

The Incident Fields

Assume that the field originates at a long distance from
the aperture such that as it impinges upon the aperture the
field is a plane wave. Further, let the incident field be a TE
(Transverse Electric Field) plane wave. That is, the electric
field is transverse to the 2 direction at all times. Also, let
the medium above the plane be free space (this has already been
assumed) and let both the electric and magnetic fields always
be transver#e to the direction of propagation. This is a TEM
(Transverse Electromagnetic) plane wave, For a TE plane wave
traveling in the TEM mode, the H field is in the 2 direction.
Referring to Figure 3, @; is the positive angle measured
clockwise from the y axis along which the wave propagates.

Such an incident plane wave with exp(-iwt) time dependence
(assumed at the 6utset) has spatial dependence governed by

(4:146):

kY. }



G SN hE B .

Figure 3. 1Incident Plane Wave with Incident Angle 6; and
Propagation Vector, K(x).

HINC(x) = 2 Hy exp(ik'r) (T4)
where
Hg = magnitude of the field
K(x) = KR = -k (%X sin(8;) + ¥ cos(8;)]

) = x kR + vy ¥

e ]
I
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With unit magnitude, the incident field 1is:

HINC(x) = 2 expi{-iK[x sin(8;) + y cos(8;)]} (75)

With this incident field and the two-dimensional cavity
discussed above, Eqs (64) through (67) may be simplified. Thé
simplifying observations are:

1. From Eq (54), the magnetic surface charge density, op(x),
is zero for the TE plane wave considered above.

2. On the PEC, the magnetic surface current density, M(x), 1is
zero.

3. The gradient, in primed coordinates, of the Green’s
function, V’'G(x;x’), has only an X component when either y or
Y' equals zero. This is the Neumann boundary condition
discussed in the introduction of the thesis. Therefore,
K(x') x V'G(x;Xx') = 0 when X' is on the x-axis.

4. The gradient of the Green’s function never has a 2
component in this two-dimensional problem. Therefore,
H(x')'V'G(xix’') = 0 for all x'.

5. The three-dimensional surface is now a two-dimensional
contour. The equations to follow will reflect that; thus, S,
now indicates the contour around the cavity and A indicates the
l1ine across the aperture.

Using these simplifications, the five equations that will be

approximated in the following analysis are:

P } lweM (X' )G (X x') dx’ (76)
A
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I
1%

with

with

Sc
X € A
¥ x HINC(x) + § X} iweM(X')G(X; X') dx’
A
X € A
= - f(X iweM(x')g(x; x’) dx’

X € S¢

]
—
> ——

+ fsu_t’) x V'o(x;x') dc'! ]

Sc U A
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and
1
— lwo(x) = -lwe f ﬁ(g)-[ﬁ(g') X V'Q(g;g’)] dc'’
2
A
+ f n(x) k2 K(x’)3(xix') dc’
Sc U A
- fﬁ()_c) iwo(x') V'8(x;x’) dc’
Sc U A
with x € Sc U A (80)

Eqs (77) through (80) are a coupled set of Fredholm
integral equations of the second kKkind for finding the currents
and charges needed to solve for the scattered fields, using Egq
(76), from the two-dimensional cavity introduced at the
beginning of the chapter. Recall if iwo is replaced by
Vs'K, as described at the end of Chapter 2, Eq (80) is not
needed. In either case, the equations are specifically
designed for use with the TE plane wave of Eq (75). Solutions
of these equations may be approximated numerically by any of
several methods. The chosen method of approximating the
solutions to Eqs (77) through (80) is introduced in the next

chapter.
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IV. Approximate Solution of the Integral Equations

In Eqs (77) through (80), linear operations (the integrals
and vector operations) act on a set of unknowns (the currents
and charges) and must be equal to a set of Knowns (the incident
fields). If the inverse of the linear operators can be found
and applied to the set of Knowns, the set of unknowns can be
determined. The Method of Moments is a reasonably simple means
by which one can approximate such an operator equation for
numerical solution (3). Eqs (77) through (80) can be solved

using moment methods by using the following approximations:

N
iwg(x) =~ L
n-=

Tn Pni(Xx) (81)
1

where ap, Bpn, and v are constants and f£,(x), pp(x), and hnh(x)
are functions to be described below.

The "2" sign in Eq (81) implies approximations because the
numbers M and N are assumed to be finite. As M and N approach
infinity, the summation (right hand side) approaches a smooth
curve (left hand side) and the "x" can be replaced by an equal

sign. In Eq (81), £n(x), hp(x), and pph(X) are basis functions
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of position (3:42). The functions fn(5) and ﬂn(f) are vectors
because M(x) and K(x) are vectors. Using Eq (81) and the

linear operators in Eqs (77) through (80) yields:

i 1 M M N N
— iweM(x) = — Eapf,(x) = EapLifp(x’') + EfpLphp(x') + Evpl3pp(x’)
2 2 n=1 n=1 n=14 n=1
with x € A (82)
N M
K(x) ® T By hp(X) = Zaplyfp(x’) + HINC(x)
n=1 n=1
with x € A (83)
1 i N M N
— K(x) ® — E By hp(x) = Caplsfp(x’') + EBpLeghp(x’)
2 2 n=i n=14 n=1
with x € Sg (84)
i i N M N N
— lwo(x) % — ErpPp(x) = Eaplefp(x'} « EPplghp(x') + EvploPp(x’)
2 2 n=1 n=1{ n=1 n:=1
with x € Sc U A (85)

The linear operators Ly through Lg are all functions of
position. That is, Ly = Ly(x), Lp = Lp(x), etc. Further, the
linear opec~ators may be determined by examining the equations

from which they came: Eqs (77) through (80). For instance,
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{ ¥ x fn(x’) X V'3(x;x') dx°

L f (x')
i-n _—
A
The method is employed by defining a weighting function,
Wm(X: Xp), for the specific problem Seing solved, and taking the

inner product of Wy with each of Eqs (77) through (80); where

the inner product is defined as:

W o(X,%x ), £(x)> = th (X, x )f(x) dc’ (86)
m m m m
Sc U A
This yields
M M N
n=1 n=1 n=1%
N
n=1
with X € A, (87)
N M

EBn<Wm hp(X)> = Eap<Wp, Lyfpn(X')> + <Wp, HINC(x)>
n=1 n=1

with Xx € A, (88)
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and
N M N
n=14 n=1 n=1
with x € Sc, (89)
N M N
1/2 27n<wm.pn(xy)> = Eapn<Wp, Lpfn(x’)> + EBp<Wp, Lghp(x')>
n=t n:=14 n=t
N
+ ErpWp, LgPp(x')>
n=1
with x € SC U A. (90)

Eqs (87) through (90) allow the currents and charges to be
found using moment methods directly. HNo matter what the shape
of the cavity's cross section, Eqs (87) through (90) should
yield a reasonably accurate solution if M and N are chosgen
judiciously. However it is advantageous to deal with a
specific cross section as opposed to a generic or arbitrary
cross section. For this reason, the specific cavity cross

section of interest is introduced in the next section.
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V. The Rectangular Cavity

Figure 4 shows the cross section of the cavity whose
scattering properties will be examined here. The rectangular
cavity has a width, w, and a depth, d. For purposes of
computation all lengths will be normalized to the width, w.
Doing 80 gives an effective width of 1, a depth of d/w, a
wavelength of A/w, etc. The sides of the cavity are
labeled S-, Sd, S+, and A which correspond to surfaces along

= -0.5, vy = -d, x = +0.5, and the aperture, respectively.

®O M A

S- S
T R ye

j;\ Sa

Figure 4. Cross Section of the Rectangular Cavity Showing
wWidth, Depth, Coupling Aperture, Along with the Currents and
Unit Normals and Their Directions.
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On Figure 4,

each surface.

noted.

Further,

the electric

the outward pointing normals are indicated on

current direction is also

The integrations within the linear operators of Eqs

(87) through (90) are line integrals with respect to positive

arc length around the cavity and across the aperture (21).

Table II gives a list of variablesg normalized to the

width.

The first column gives the original variable. The

second column gives the normalized variable and the third

column gives the name used in the computations.

Table I1I.

Quantities Normalized to the Width

Original
Variable

Variable

Normalized

Used
Quantity

With the geometry indicated in Figure 4,

w

b 4

w/w
x/w
Y/w
z/w
d/w
A/w

Kw

the cavity can be

brokKen up into N equally sized segments with M of them across
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the aperture. If the size of each segment ig termed ACp
(actually normalized to w) where ACy = ACp = ... =

ACy, the basis functions can be defined as:

1é if x is on AC
[ n (91)

0O elsewhere

where the direction, 8, associated with £,(x) is the same as
that of the current for each particular segment. For instance,
on the inside of the aperture K(x) is in the % direction.
Similar basis functions are defined for h, and pg.

Using "point matching" for testing, the weighting

function, Wp(x;x'), is defined as (3:42)
W (XiX') = W(XiXm) = 3(X - Xp) (92)

Eq (91) reduces the integrals within the linear operations
Ly(x), Lo(x), ..., Lg(x) to integrations over a small segment,
AC. Eq (92) replaces the position vector x with the
position vector x, in Eqs (87) through (90). To illustrate,
let r{x;x') be any function that is continuous along the line L

and let the line, L, be broken into M segments. Then

n=1
L AC,

M
f r{x;x') dx®* = E Ir(x;x’) dx'
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Taking the inner product as defined above yields

M M
J [ E Ir(x;x')dx’ ] S(x-x ) dx = E J r(x ;x') dx’
n=1 m n=1 m

L AC, ACq

If r(x;x*') is one of £, h, or p given in Eq (91), only those
line segments ACp survive on which r is non-zero.

Referring now to the problem at hand, by letting xn be
the midpoint of each line segment, ACp, (as m goes from 1
to N) and x;, be the midpoint of each line segment AC, (as n
goes from 1 to N), the integrals over the line segment AC,

may be approximated by:

J f£(x ;x') dx' ~ £(x ;x ) AC (94)
-m _ - -m -n n

ACp,

if AC, is sufficiently small.

Using Eqs_(91) through (94) and performing the inner
products of Wy with the linear operators operating upon their
appropriate functions, Eqs (87) through (90) may be cast in a
more easily solvable form.

At either y or y' equal to zero, G(XpmiXp) = 20 (Xmi Xp).
This fact is used to simplify the equations. It is important
t0o note that the integrations are line integrals and are

independent of direction across the small segment, AC.
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Since AC, is always a positive number, the line integration
does not affect the sign of the approximation as defined in Eq
(94). Further, the principle value of the integral over
V'3(Xm: Xpn) 1s identically zero kas will be shown) when n:-m.
wWhen n:=m, the segment AC, is termed a self-patch. The
principle value integrals over the self-patches will now be

examined in more detail.

Self-Patch Integrations

In two-dimensions, V’'3(X;X’') is

VIo(xix’)

"
|
L
+
|
~

- H(1) (kr)
= —4— [(x-x')ﬁ + (y—y')9] (95)
r
In Eq (95) the Hankel function of the first Kind order one and
the {/r term both produce singularities when x=x'. Performing
the integrals in the principle value sense, however, does not
produce singularities.

When integrating V'3(x;x’')'X along the y-axis, the term
involving x-x' (or xpm-X, in the approximation) will always
multiply the integral by zero when Xz=X' (Oor Xm=Xp). The same
situation is involved when integrating V'3(x;x’')'y along the
x-axis, where the (y-y') term always multiplies the integral

by zero when yv:=y'. Thus, those particular self-patches are

identically zero.
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For the gself-patches involving integrations in the x
direction of V’Q(;;g’)-ﬁ. a4 more rigorous proof is necessary.
The same situation applies when integrating in the y direction
of V’Q(z;g’)'9. In the following proof, the variable "x" may
be replace by the variable "y" to achieve the same result as
long as every "x" is replaced by a "y",

when integrating on a self-patch in the x direction (for

the rectangular channel), y is always equal to y'. Thus,
Xp+AC/2
i H“)[klx -x'|)
V'Q(x ;X’)‘)A( dx’ = - 1 m (x —x)) ax’
]- m 4 lx -xsl m
ACp m
Xm-AC/2 (96)

Eq (96) is a symmetrical integration of an odd function about
the singularity x’=0. This integration is therefore
identically zero.

The integrations over all self patches involving V'3(x:x')
have been shown to be equal to zero. All of the self—patﬁhes
that do not involve a V'{§(x;x’') term have, instead, only a
g(x;x’) term. These integrals do not reduce to zero. Again,
the variable "x" may be replaced by the variable "y" in the

following integrals.
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Xp+AC/2
i
Jcb(x ix') dX? = — H(“(k|x -x'|) dx’
m 4 (o] m

ACp
Xm-AC/2

AC/2
i
= lim — H{1) (kx) dx (97)

€—s0 2 ©

For small arguments, the asymptotic approximation for

Ho (1) is (1:360)

2 2 z2
Ho(1)(z)~ i — In(z/2) + 1t + i —y - i — In(z/2)
w ] a2n
2 1 12
+ [ i - (1-y) - 1 J — + 0[z%1n(2))
w 4 (98)

where y = Euler’'s constant & 0.5772156649015. ..

Thus,

KAC i 2y - AC
f 0(x ;1 x') dx' & —— [ - - — - — [ln(kAC/4) -1 ]
m 4 K Kw 2n
ACp
KAC 43 2 A
+ [ — ] [ — [ln(kAC/4) - 1/3 ]
i 3Kw -
(99)
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All of the self-patch integrations have now been
determined. Those line integrals over sections other than

self-patches will be approximated using Eq (89).

Solving for the Currents and Charges

Most of the equations used thus far are vector valued.

However, these equations can be broken into % and 9 components

if necessary and a set of equations developed from each of Eqs
(88) through (91) and their corresponding earlier equations,
Eqs (77) through (80).

The set of equations corresponding to Eqs (77) and (88)

are:
For m = 1,2,3...M where ﬁi!m) : -y
M R M
0 = £ ap [V'3(XpiXpn)'Y) AC, - k2 ¢ Bn 3(Xmi Xp)ACh
n=i n=1
L+2M M+L .
+ k2 T By 3(XmiXn)ACp + E v [V'3(XmiXp) X)AC)
n:=L+M n=1
N
+ vy [V'3(Xmi Xn) RIAC, + ap/2 (100)
n=M+L
where
L = the number of segments along S- and S+
M = the number of segments along A and Sd

Eq (100) is actually a set of M equations because it applies

for m=1,2,...,M. There are only M equations because X, isS not
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on the aperture when m > M; Eq (77), and therefore Eq (88), is
only good when the observation point (X or xnu) is on the

aperture. The set of equations that correspond to Eqs (78) and

(89) are:
Form = 1,2,3,...M where fi(Xy) = ¥

1 M

- HiNC(xn ) = - £ ap 3(XmiXp) ACp + Bp/2 (101)
2 n=14

The set of equations that correspond to Eqs (79) and (90) are:

For m = M+1,M+2, .. .M+L where fi(xy) = -X
M M R
0 = £ apnQd(Xmi; Xpn)ACp + £ B [V'3(Xmi Xpn) ' YJACL + Bp/2
n=i n=1
L~2M . N R
- L BplV'3(XmiXn) YIACh ¢+ & Bp [V’3(Xmi Xp) X)AC)
n=M+L n=L+2M
(102)
For M+L < m < 2M+L where f(xy) = -¥
M M
0 = -C and(XmiXn)ACq - £ Bp [V'3(XmiXp) ¥IACh - Bm/2
n=! n=t
L+M R N
+ L BplV'3(XmiXn) XJACh, - E Bp ([V'3(XmiXp) XJACH
n=M n=L+2M
(103)
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For 2M+L < m < N where ﬁ(gm) : X

M M
0 = - F and(XmiXn)ACp - L By [V'3(XpiXy) ¥YIAC, - Bp/2
n=1 n=1{
L+M L+2M
+ T BplV'3(XmiXn)'X)AC, + & B [V'8(Xm: Xp)'¥1AC,
n=M n=L+M

(104)

And finally, the set ot equations that correspond to Eqs (80)

and (91) are:

For 0 <m < M where fi(xp) = ¥

M R M+L n
0 =n§10n[7’0(5m;5n)ix]ACn + ngnfn[v’c(zm;gn)'ylACn

ZH#L N
*+ K° £ Bnd(XpmiXn)AC - k2 T Bnd(Xm; Xpn)AC
n=M nz=2M+L
N
- L (V'8 (Xmi Xp ) $1AC, - Tm/2 (105)
n:=M+L
For M < m < M¢+L where f(xy) = -X
M A M A
0 = nzian[V’Q(gm;gn)-y]ACn + 811n[V’Q(§m;§n)-x]ACn
= n:=
M 2M+L
© K2 £ Bnl(XmiXn)AC + k2 T Bpd(Xpmi Xp)AC
n:=1 n=M+L
N
+ ¥ 1p(V'3(Xmi Xp) X)AC, - Tp/2 (106)
n-M+L
56




For M+L < m < L+2M where ﬁ(gm) = -y

M M+L .
0 = -Bian[V’O(zmzzn)'ﬁ]ACn + E *n(V'8(XmiXn) $14Cy
ns H

M+L N
- K2 p B o(XpiXp)AC + K2 E Bpd(Xmi Xp)AC
n=M n=2M+L
N
+ B (V' 0(Xmi Xpn) F1AC, - Tm/2 (107)
n=2M+L

A

For L+2M < m < N where ﬁ(!m) = X

M R M+L A
0 = ;giantv'c(sm;sn)'ylACn -ngivn[V’O(zmzzn)'x]ACn

M 2M+L
+ K2 p B0 (Xmi Xn)AC - K2 E Bpd(Xmi Xp)AC
n=1 n=M+L
2M+L
- L (V'8 (Xmi Xn) RIACy, - rp/2 (108)
n=M+L

Eqs (100) through (108) represent 2N+M equations and 2N+M
unknowns. The unknowns are a4, G2, ... QM Bg» B2, ... BNy T1»
Y2, ... and ry. Each of the unknowns appear in each of the
equations, though several are multiplied by zero. Remember,
each of Eqs (100) through (108) are valid for a given set of
Xm's. The unknowns may be solved for using matrix techniques.
This is easier to see if the equations are set in the following

form:
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- 1ir h B 1
l l ¢ & 8 » l a o
11 12 (1) (2N+M) A ;
1 1 PN . . :
M
e ’ B1 8(mn
aH ‘(2“)
L] L] s & & @ L[] T o
01 :
1 . e e 1 1 4 0
[  (2N+M) (1) (2N+M)(2N+M)JL N J L . (109)

Where lp, are determined from Eqs (100) through (108) and
represent the inner products in Eqs (88) through (91). The
vector in Eq (109) with the coefficients a, B8, and r naturally
represents the unknowns. The coefficients gpn represent the
incident magnetic field in Eq {(108) obtained from Eq (74).

Representing Eq (i09) as

(lmn) (an] = (&m)

the unknowns by can be found by the inverse operation (or its

equivalent),
[ag) = (lgpp) "} lém) (110)

Once the unknowns, a’s, f's, and r's, are determined
numerically, they may be used in Eq (81) to approximate the
currents and charges as functions of position. These
approximations may then be used to find the scattered and

total electric and magnetic fields using Eqs (58) and (59),
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respectively, for all points in the half space above the y=0
plane and Egqs (60) and (6%1), respectively, for all points
inside the cavity. The same approximations used in the
previous integrals may be used to approximate the integrals in
Egs (58) and (59). If the radar cross section of the cavity is
desired instead of the scattered fields, an equation needs to
be developed to produce it. The required equation is derived

in the next chapter.
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v, Radar Croess Section

In three dimensional space, the RCS (radar cross section)
of an obstacle, or scatterer, is defined as the area for which
an "incident wave contains sufficient power to produce, by
omnidirectional radiation, the same bacK-scattered power
density" (4:116). Simply put, RCS is the cross sectional area
that would normally be required to isotropically scatter the
same power as the target radiates toward the receiver. The
mathematical form for RCS can be in terms of the incident and

scattered power, gi and PS respectively, as in (4:116):

PS|
o =z lim 4wrd ———— (111)
r—+o |BY)

RCS may also be determined from the field quantities, E and H,

as in (9:157):

|ES|2
o = lim 4wpd ——— (112)
r—o |EL|2

where F refers to either E or H.

Though other definitions are possible for RCS, Eqs (ii1)
and (1i12) are the most widely used. The assumptions that are
made in deriving Eqs (1i1) and (t112) are that the scatterer is
a three dimensional object and the distance, r, from the object
approaches infinity to remove the dependence on range. The

scattered fields decay as 1/r 1in the far fiel!d. The presence
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of r2 in the numerator of Eqs (111) and (1i12) effectively
eliminates the effect of range on RCS.

For two-dimensional RCS problems, such as in the channel
problem, the RCS is the area (or width) that would normally be
required to scatter "isotropically", in two-dimensions, the
same power radiated toward the receiver. A three dimensional
isotropic radiator radiates into a sphere; a two-dimensional
isotropic radiator radiates into a circle. The fields decay as
r-1/2 in two-dimensional problems. Though not actually a
cross sectional area, the term RCS is still used in two-
dimensions. Perhaps a more correct term would be a scattering
width (9). The equation for RCS using the incident and

scattered fields in two-dimensions becomes:

|E% @
c =z lim 2wr ——— (113)

The distance from the scatterer is again large enough to
remove the dependence on range. Notice that if a two-
dimensional scatterer could be seen in three dimensions, it

would be infinitely long. If a two-dimensional scatterer of

bounded cross sectional area could be viewed in three
dimensions from a place a large distance r away, the
scatterer would look like an infinite line.

To use Eq (113) on the chanﬁel problem, it must be noted

that only the RCS of the cavity can be found. Since the cavity
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is embedded in an infinite PEC plane, it would be impossible to
reach a distance, r, such that the plane would appear as a
point. Therefore, only the cavity’'s RCS can be determined.
This is not at all bad., Determining the RCS of an infinite PEC
plane is nearly useless.

The magnetic field scattered from the channel can be found
using Eq (76) once the magnetic current is Known, It appears

as

1WE
HS (x) = J[l_w_:')s(_:s;:_:’) dx’ (114)
4w
A

Perhaps more precisely, using Eqs (70) through (73),

172
we
HS(x) = - —— H(x’)Héi){K[(x—x’)a + y2)11/2} axe (115)
— —-— a -— ——
-1/2

Eq (113) refers to the limit as r approaches infinity. Since
Eq (115) is in (x,yY) coordinates, it needs to be converted to
(r, 8) coordinates. I1f ¢ is the angle from the.positive y axis
measured positively clocKkwise and r is the distance from the
origin, then the Hankel function of the first kind, order zero

in Eq (115) becomes

HEV ik (x-x1)2 + y2)1/2y

= Hf1)ik(r2sin20 -2x'rsin® + x'2 + y2cos2e)1/2;
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or
Hi ) ik (x-x')2 + y211/2} - H{1){k(r2 - 2x'rsine + x'2)1/2;
(116)

since
r sin(8)
r cos(8)

%
0 N

For large arguments, such as when r goes to infinity in Eq

(116), the HanKel function of the first kind order zero behaves

as
2 1/2

Hé“(z)fv [—] expli(z-w/4)), ) (117)
"z

Using a binomial expansion on the argument of Eq (i116) and
discarding terms on the order of r'i. a simpler form of Eq
(115) is possible. In antenna theory it is common practice
when going into the far field to éxpand the argument and Keep
the £irst term for magnitude purposes and the first two terms
for phase purposes. This is what has been done here. The new
form ot Eq (115) is

1/2
2 1/2
H8(r,0) = iwe 5(5’)[ —_— ]exp[i(kr-x’ksine - w/4)) dx°®
nkr
-1/2 (118)
The integration in Eq (118) is in terms of X’ so several

of the constants may be removed to outside of the integral

sign. Also, using Eq (81) to approximate iweM(x') and
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breaking the integral from -t/2 to 1/2 into M integrals each

over a width AC,, Eq (114) may be tfurther simplified as
Xpt+AC/2

i 2 1/2 M
HS(r,0) = — [ — ] exp{i(kr-w/4)) T an exp[-ikx'sin(0)] dx’
4

= wKr n=1
(119)
After performing the integration, the magnitude of the
scattered field becomes
2 1/21 M sin[k(AC/2)3in(0))
|H’| = [ —_— ] Da exp[-ikx sin(9))
- nXr n=10 n K sin(e)
(120)
and K times the RCS becomes
M sin{k(AC/2)sin(0)]) |2
Ko = & L a exp[-ikx s8in(8))
n=4 I n K sin(0) (121)

Notice that when sin(9) = 0, the ratio in Eq (12t1) is equal
to AC/2. Once the coefficients of Eq (81) have been -
determined (i.e. a's, B's, and r’s) the RCS of the cavity may

be generated.

64




VII. The Computer Program

A FORTRAN computer program has been written to implement
Eqgs (100) through (108) and solve for the unknown coefficients
in Eq (81). Using these coefficients, the program then
evaluates Eq (121) for the RCS of the cavity. The fields
scattered from the cavity or from both the PEC plane and the
cavity are easily obtainable using Eqs (59) through (62), but
have not been plotted. A copy of the program is contained in
Appendix A,

The inputs to the vorogram are the channel depth,
normalized by the width, the incident angle of the incoming
field, and the operating frequency in the form of the wave
number, K. Here, the wave number is also normalized by the
channel width, w. The output of the program is the RCS of the
cavity excluding the PEC plane at all reflected angles from

-909 to +90° measured from the +y axis.

Appendix B provides some of the output from the program in
a plotted form. The input angles for the plane wave are CBY
equal to 00, 22.59 459 and 67.5°., The wave numbers used are K
equal to 0.1, 1.0, and 10.0 which correspond to long
wavelength, intermediate wavelength, and short wavelength
respectively. The normalized depth of the channel, d, is
either 0.25, 1.0, 4.0, or 8.0.

Using these numbers and subdividing the channel into

pieces small enough so that the smallest length in the problem
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(depth, wavelength, or width) is resolved by at least 12
patches, will yield systems of equations (2N+M by 2N+M) ranging
in size from a minimum of 108 by 108 to a maximum of 440 by
440. The maximum number of equations and unknowns the program
can reasonably solve is 450 due to storage constraints. A
Gaussian elimination subroutine utilizing scaled partial
pivoting and iterative improvement was used to solve the linear
system of equations. Matrix inversion was tested as a possible
method of soiution and found to be as accurate as the Gaussian
elimination subroutine (to eight significant digits) and much
faster for more than one input angle.

Using the Gaussian elimination subroutine was slightly
faster than the matrix inversion for one input angle and the
output of both solutions was comparable. However, a single
matrix inversion can be used to determine the RCS for many
incident angles. With more than one input plane wave (i.e.
04:=00, 22.59 459, and 67.5%), it was more efficient to use the
matrix inversion technique. The output plotted in Appendix B
was generated using the matrix inversion technique.

The program given in Appendix A can be easily modified to
allow the variables k and d to vary while Keeping the incident
and reflected angles constant. Doing 80 requires a matrix
inversion for each different K and d. This slows the program
down since several inversions are necessary to get a good plot
for the data. The plots obtained by varying K and 4 for

specific input and output angles are presently more jinteresting
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than those plots contained in Appendix B. Examples of varying
K and d are given in the next chapter with a discussion of the
results of the thesis.

Table III gives a quick 1ist of the plots obtained by
running the program. The plots generated from the program's

data were obtained from the program inputs given in the table.

Table III. Summary of Inputs to the Plotted Data

— —

Normalized Normalized Plane Wave Matrix
Wave HNumber Channel Depth Incidence Angle Size
K d e1 2N+M
l 0.1 0.25 0, 22.5, 45, 67.5 288
I 0.1 1.0 " " " 108
| 0.1 4.0 w " " 252
1 0.1 8.0 " " " 444
[ 1.0 0.25 " " " 288
| 1.0 1.0 " " " 108
i 1.0 4.0 " " " 252
' 1.0 8.0 " " " LY Y
i 10.0 0.25 " " " 288
i 10.0 1.0 " " " 144 |
. 10.0 4.0 " " " 336
y 0.2—10.0 1.0 0, 45 -
0.2—10.0 4.0 0, 45 -
| 1.0 0.25—8.0 0, 45 -
i 8.0 0.25— 8.0 0, 45 -
i
i ’
! Total Number of Plots = 60 i
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The theory and equations derived earlier allow for
determining the magnetic or electric field at any point x or
the “CS at any bistatic angle. Notice that x may be inside the
cavity, on the cavity, in the upper half space, or at any
desired point in space. The plots given, however, are only for
the RCS of the given input values; no plots were generatéd for
the fields inside the cavity, though it is trivial to find them
if desired. Discussion of the most prominent results is given

in the next chapter.
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VIII. Results

The most important contribution of this thesis is the
development of the coupled set of Fredholm integral equations
of the second Kind., A set of equations was developed for the
region above the cavity and a set of equations was developed
for use within the cavity. These equations are coupled
together by the aperture of the cavity. The coupled set (Egs
(64) through (67)) of Fredholm integral equations of the second
Kind can be used for any cavity in a PEC plane; they were later
specialized for use with a two-dimensional cavity when a TE
plane wave ig the incidént field. In this particular case, the
equations can easily be solved numerically; or at least
approximated numerically.

The resulting set :t equations developed for the two-
dimensional problem (Eqs (76) through (80)) reduced an
integration over an infinite plane to an integration over an
aperture and around the cavity within the plane. These
specific equations can be used with any shape two-dimensional
cavity. The scattered fields can be determined by using Egq
(7T6) and the currents and charges found using Eqs (77) through
(80).

A specific, rectangular, cavity was introduced and the RCS
determined from that shaped cavity for several wavenumbers, K,

and cavity depths, d. A computer program was written and used
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to solve those equations. Most of the data generated by the
computer program is given in Appendix B. Some of the most
important observations of that data will be presented here.

Figure 5 shows three plots of RCS data for a wavenumber of
10, an incident angle of 0° and channel depths of 0.25, 1.0,
and 4.0, Notice that the shape of the curves remains
relatively constant whil~. the peaK magnitudes change. With
incident angles of 09, all of the other sets of k and d produce
plots similar to Figure 5. This indicates that a 00 plane wave
{with any wavelength) incident to any rectangular cavity
produces a bistatic RCS of roughly the same shape given in
Figure 5; only the magnitudes change with changing wavenumber
and cavity size.

Figure 6 shows the same wavenumber and depths when the
incident angle is 459, At this incident angle, the shape of
the curves do not remain constant. This ind.cates that depth,
wavenumber, and incident angle all contribute to RCS separately
and are not tied specificaily together.

Figures 7 and 8 give plots of K=1.0 and d=1.0 with
incident angles of 22.59 459 and 67.5° and k=1.0 and d:=8.0
with incident angles of 22.59 459 and 67.59 respectively.
With varying incident angles and a [ixed K and d, the shape of
the curves tend to change slowly. The relative magnitude of
the ~lots also changes slowly. This type of plot occurs for
e.ery channel depth when K=0.1 and k=1.¢C When Kk=10.0 (see

Appendix B for the plots) the wavelength is much smaller and a
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small change 1n 1nput angle changes the ouput RCS by a much
larger degree.

Allowing K to vary while hoiding the depth and incident
and scattering angles constant produces some interesting plots.
Figures 9, 10, and 11 are examples of this type of plot.
Figures 9 and {0 are monostatic at 00 with d-=1.0, while Figure
t1 1s bistatic at 0° and 459, Notice that Figure {1 contains
two curves; one for an input angle of 0©° (output of 45°) and
one for an input angle of #4#5° (output of 0°), The concept of
reciprocity (21) 1s represented yquiie well from the nearly
exact coincidence of the two plots.

The plet 1n Figure 9 approaches zero at three points: all
integer multiples of n. When K=nmn, the wavelength, X\, 1s
2/n. With a depth of 1.0 and an incident angle of 09, the
monostatic RCS from this cavity approaches zero because an
integer number of half wavelengths exactly fill the cavity.

The monostatic RCS at 450 (Figure 10) has what seems to be
discontinuities around K-=3.4, K=6.5, and K=9.7. Though not
shown, these RCS "spiKes" occur at incident angles of 159, 300,
and 600 at near the same values of K, and expected for at least
all angles in between 15° and 600,

This phenomena was investigated further by: 1) expanding
the curve around the KkK=3.4 value (Figures 12 and 13) and 2)
allowing the depth to vary with k=3.3, K:=3.4, and K:=3.5 (Figure
1+). From Figures 12 and 13, it appears as if the "=spiKke" 1s

at least a smooth curve and may belong i1n the RCS plots (as
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opposed to being a numerical instability). Figure {4 ghows
that slight changes i1n K and d around these z7i"es give large
changes in the monostatic RCS at 45°. Again, this indicates
that k, d, and @; are all separate variables and should be
treated as such.

Holding k constant and allowing d to vary produces
oscillaiting riots from a maximum to a minimum and back again.
This 15 because as the depth of the channel is increased, more
wavelengths (when the wavelength is held constant) can fit into
the channel. An example of this type of plot 1s given 1in
Figure 15. Figures similar to Figures 5 through 15 are given

in Appendix B.
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Figure 5. Bistatic RCS with k=10.0,

an Incident Angle of 00,
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k=1.0 d=1.0
8; = 22.59 459 & 67.5°
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-90 =70 -&60 -~30 -10 10 30 &80 70 90
Bistatic Scattering Angle (degrees)
Figire 7. Bistatic RCS with k=1.0 and d=1.0. The Incident
Angles are 22.59 459 and 67.5°.
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k=10 d=8.0
0; = 22.59, 450, & 67.59°
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Figure 8. Bistatic RCS with k=1.0 and d=8.0.
Angles are 22,59 45°. and 67.5°.
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Monostatic Scatter at 0° with d=1.0
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Figure 9. Monostatic RCS at 0° with d=1.0 and a varying
wavenumber, K.
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Monostatic Scatter at 45° with d=1.0
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kY

Figure 10. Monostatic RCS at 450 with d=1.0 and a varying

wavenumber, K.
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Bistatic Scatter at 0/45° with d=1.0
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Figure 1.
wavenumber,
curves.

Bistatic RCS at 09/45° with d:=1.0 and a varying
k. Reciprocity can easily been seen from these two
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d=1.0 Monostatic Scatter at 45°

Figure 12. Monostatic RCS at 45° with d=1.0 and a varying
wavenumber, Kk; Small increments of K were taken around the
spike in Figure 10.
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Figure 13. Monostatic RCS at #45° with d=1.5 and a varying

wavenumber, K; Small
spike in Figure 10.

increments of kK were taken around the
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Monostatic Scatter at 45°
Varying d and heeping k conslont

kg

Figure 14, Monostatic R7TS at 459 with k=3.3, 3.4, and 3.5 and
a varying depth, d; Small increments of d were taken for the
three K values around the spike in Figure 10,
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Monostatic Scatter at 0°With k=1.0
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Figure 15. Monostatic RCS at 0° with a fixed K-=1.0 and a
varying depth, d.
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IX. Conclusions and Recommendations

The most important contribution of the thesis is the
development of the coupled set of Fredholm integral equations
of the second Kind for the two-dimensional cavity. The
integral equations derived for finding both the electric and
magnetic fields and the surface currents and charges are exact.
This thesis shows that using the half space Green's function to
derive the equations above the plane in Figure {1, the free
space Green's function to derive the equations used inside the
cavity, and then coupling these equations through the aperture
18 an accurate way to determine the fields scattered from the
channel. It is concluded that the RCSs plotted in Figures S
through 15 and Appendix B are reasonably accurate. They are
not exact in that some approximations were necessary to solve
the equations numerically.

The method used to calculate the fields, currents, and
charges is an approximation. As the discretization parameter,
AC, approaches zero, the approximation should better represent
the exact solution. However, with more segments, the number of
unknowns and equations also increases and therefore so does the
computer time required to solve the system of equations. As
the number of equations increases, 8o too does round-off error
in the computer. The accuracy that can be obtained using
moment methods is therefore limited by round-off error.

In this thesis, the smallest length in the problem

{wavelength, channel depth, or widtbh) was broken up into at
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least {12 segments. This seems to give reasonable accuracy at a
reasonable cost in computer time. Test cases were applied for
several different segments per smallest length. (Actually, 4,

5, 6, 8, 10, 12, 14, {6, 20, 24, and 32 segments per smallest
length were used.) All of the cases above 8 segments per
smallest length gave RCS plots of approximately the same
magnitude and shape for all bistatic angles. The time required
when using 12 segments per smallest length w2s cnly a few
minutes longer than when using 10 segments. Though, even at 32
segments per smallest length, the RCS plots seemed to be still
converging on an "exacti" plot (remember, numerical solutions
are limited by round-off error.) The theory and methods used
here allow for more accuracy, limited by round-off error, if
desired. The user must be willing to give up computer time 1in
order to achieve this accuracy.

Appendix C gives a description of a target designed to
obtain RCS measurements of the rectangular cavity. Usi1ng this
target and the method described in Appendix C, laboratory
measurements can be obtained to checK the predicted RCS values
given in this thesis.

There are several possibilities for further analysis for
this problem. These include:

1. MaKing the measurements on the target described in Appendix
C to determine the accuracy of the method described therein.

2. A selection of different shaped cavities than the

rectangular one used here. This would require reworKing the
approximate solutions and new computer programs.
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3. A TM (transverse magnetic) incident field instead of the TE
case used here. New equation3 may have to be derived using
Dirichlet boundary conditions and an equation similar to Eq
(58) could be used in place of Eq (60) and an equation similar
to Eq (61) used instead of Eq (59) to get egquations similar to
Eqs (64) and (65) respectively.
4., A cavity filled with a dielectric. This changes the
problem drastically. The free space green's function inside of
the cavity will have to be evaluated to determine the affects
of filling the cavity with a dielectric.
5. Change the channel to be an open channel, meaning that the
depth is infinite. New equations would need to be derived for
the inside of the cavity in this case. Perhaps a new Green'’s
function can be explored to eliminate integrating along the now
infinitely deep channel sides.
6. Let the cavity be three dimensional. That is, let the
cavity have a finite length as well as the finite width, w, and
depth, d. This gets closer to an open ended flanged waveguide.
Another contribution from this thesis isgs that it may now
be possible to easily determine the RCS from infinite
cylinders, or other two-dimensional objects, containing abrupt
"cavity-like" variations in an otherwise smooth surtace. I£
such an object had a trench along the side, such as the
rectangular cavity explored in this thesis, or some other
cavity, 1t should be possible to find the RCS of such a
cylinder by adding the fields scattered from a perfect cylinder
to those scattered from the perturbing cavity and using the
result as the scattered field. Such an approximation, based on

the cavity solution obtained herein, would better represent the

true solution when the curvature near the cavity 1s small.
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Figure 16 shows the proposed method to approximate the
scattered RCS from a cylinder with a small rectangular cavity.
It should be investigated to ascertain the feasibility of the

method.
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The above recommendations for further study are important
to fully evaluate the scattered EM fields frox objects
containing cavities. The information contained in this thesis
is a continuation toward that goal.

In the preceding pages, a set of Fredholm integral
equations of the second Kind using Neumann boundary conditions
(the half space Green's function, G(x;x')) were derived for the
half space above the cavity. These equations were then coupled
to a corresponding set of integral equations for inside the
cavity and the coupled set was used to find surface currents
and charges that could be used to find the scattered fields or
the RCS of the cavity. A specific, rectangular, cavity was
introduced as a test case and the RCS calculated using a
Fortran computer program specifically written for this task.
The output of that program was addressed and presented.

Finally, specific areas for future analysis were given. Though
the analysis, study, and experimentation continues, this thesis

has completed.
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Appendix A: Computer Program

The following listing is the FORTRAN computer program

written to solve the test problem within the thesis.
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This i8 the program for finding the RCS of a rectangular
channel! of normalized depth (dw), unity width, and for a
wave number (wk) read as input,. This version runs on the
AFIT CSC computer system with IMSL commands. The program
must be linKed with the IMSL library. To do this on the
CSscC

THE APPROPRIATE LINK STATEMENT IS:
LINK FILEHAME.OBJ, IMSL$DIR: IMSL/LIB

This version uses the matrix inverse routine.

It reads the input file "DINP.DAT" for the number of
different K's (wK) and d’s (dw) to be used. This number is
called nin. The program then runs nin times and prints out
the RCS data 1n 10 significant digits. The number of
segments that the smallest measurement is to be broken into
is read from an input file as well as the incoming
planewave angles.

This version checks for 1/delc as an integer. As long

as npp 18 divisible by 4, d is a multiple of .25 and

K=10, or less than 2pi, this will work.

Some of the main variables are:

J:-imaginary operator (squareroot of -1)

dw=channei depth normalized to the width

wK:-wave number normalized to the width

delc-width of each line segment after discretization
RCS():=Radar Cross Section data that is output

XM(t(or 2), N)=The midpoint of the Nth linesegment, a i
indicates the x point and a 2 indicates the y point
CLNM(m,n):-the matrix holding the data for the linear
operations on the currents and charges. (see the Thesis ¢

noted above Eq. (109) for details)

cout()=the current and charge coefficients
€() = the incident fields data (see Eq. 190 in the thesis)

IMPLICIT DOUBLE PRECISION A,B,D,E,F,H,0,Q,R, T, UV, WX,Y,Z

IMPLICIT COMPLEXxi16 C,J,G, P, S

DOUBLE PRECISION CONST

CHARACTERx 10 FLNAME

DIMENSION G(1:500), CLNM(1: 500, 1: 500), COUT(1: 500)
DIMENSION CWKS(125250), IWKS(500), RCS(1:10, -90: 90)
COMMON J, XM(1:2, 1: 500), WK, DELC
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C Set some of the preliminary constants

J=(0.D0, 1.D0)
ONE=1.DO

CZERO:= (0.DO0, 0.D0)
PI=3.14159265359D0

Open files for input (2 and 4) and output (5)
unit 5 holds the real and imaginary parts of the current
across the aperture for the first incident plane wave

aaon0aao0n

OFEN (UNIT-=2, FILE='DINP.DAT', STATUS="'UNKNOWN')
OPEN (UNIT:=4, FILE='DINZ2.DAT', STATUS="'UNKNOWN’ )
OPEN (UNIT-:5, FILE='CRNT.DAT', STATUS='UNKNOWN' )

NIN is the number of times to read the input file for sets of
k and d (which are wk and dw) and output files to be unit #3
NPP is the number of points per smallest measurement

OO0 aa0

READ (2,899) NIN
READ (2, 899) NPP

RFRST is the first incidence angle, RLST is the last, and
RSTEP is the step size to get from RFRST to RLST

aooaoa

READ (4, x) RFRST. RLST, RSTEP
898 FORMAT (F10.3)
899 FORMAT (I4)

C
C IMAX is the integer to be used latter to store the data
c generated as RCS data
c
IMAX=IDINT ((RLST-RFRST)/RSTEP+1.5)
DO 650 ICNT-:=1, NIN, 1
READ (2, 850) WK
READ (2, 851) DW
READ (2, 855) FLNAME
OPEN (UNIT=3, FILE=FLNAME, STATUS='UNKNOWN' )
WK:=DBLE (WK)
DW=DBLE (DW)
C
C WAVE is the wavelength
c RMIN is the smallest of WAVE, DW (depth), and { (width)
WAVE:=2.DOxPI /WK
RMIN:-DMIN1 (WAVE, DW, ONE)
C
C Find the discretization size, DELC
c and then maKe sure that i1/delc is an integer
c

DELC=RMIN/DBLE (FLOAT (NPP))
DELC=1.DO/DBLE(FLOAT(IDINT(!.DO/DELC+0.99975)))
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an0an
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C The

12
C

NMAX will be the matrix size (nmax by nmax). It is the total
number of line segments needed to go around the cavity twice

across the aperture one extra time.
information is w#ritten out just to Keep track how the

program is progressing.

NMAX:IDINT ((4.D0O%xDW+5.D0)/DELC +0.5D0)
WRITE (%, 854) WK, DW, DELC, NMAX, FLNAME
WRITE (3, 854) WK, DW, DELC, NMAX, FLNAME
FORMAT (1X, 3E14.6, 2X, 13, A10)

FORMAT (F9.6)

FORMAT (F4.1)

FORMAT (13)

FORMAT (A10 )

FILL THE POSITION MATRIX XM()
THE "+0.5" INSURES THAT 1.9999 DOES NOT GET TRUNCATED

MONE through MEIGHT are the last line segments (delc’'s)
each major segment, across the aperture for M, across the

aperture of K, down S- for K,

MONE:=IDINT (1.DO/DELC+0.5D0)
MTWO:=2xMONE

MTHR :MTWO+ IDINT (DW/DELC+0.5D0)
MFOUR=IDINT((3.D0+DW)/DELC+0.5D0)
MFIVE-MFOUR+IDINT (DW/DELC+0.5D0)
MSIX-MFIVE+MONE
MSEVN:-MSIX+IDINT(DW/DELC+0.5D0)
MEIGHT:=MSEVN+MONE

first section is across the aperture (for Mag Crnt)

DO 10, I=1,MONE, {
XM(1,1)=-0.5D0+ (DBLE(FLOAT(I1})-0.5D0)xDELC
XM(2,1)=0.0D0

CONTINUE

second section is across the aperture for the Kk vector

DO 12, I-MONE+1i, MTWO, 1
XM(1, 1)=0.5D0-DELC» (DBLE(FLOAT(I-MONE))-0.5D0)
XM(2,1)=0.0D0

CONTINUE

C Section 3 is for 8-

C

DO 14, I =-MTWO+1{, MTHR, {
XM (2, I)=-DELC»* (DBLE(FLOAT(I-MTWO)})-0.5D0)
XM(1,1)=-0.5D0

93




16

anoann e NeNe )Y aonoaQnmr QOO0 - e NeNe]

e NeXe Y

CONTINUE
Section 4 is for sd

DO 16, I=MTHR+{, MFOUR, 1
XM(1, 1)=-0.5DO+DELCx» (DBLE (FLOAT (I-MTHR) )-0.5D0)
XM(2,1)=-DW

CONTINUE

Section 5 is for s+

DO 18, I:-MFOUR+1,MFIVE, {
XM(2, I)=-DW+DELCx» (DBLE (FLOAT(I-MFOUR) )-0.5D"%)
XM(1,1):-0.5D0

CONTINUE

Section 6 is for A for the sigma equations

DO 22, I:=MFIVE+{,MSIX, 1
XM(1, I)=0.5D0-DELCx (DBLE(FLOAT(I-MFIVE))-0.5D0)
XM(2,1)=0.0D0

CONTINUE

Section 7 is for s-

DO 24, 1=MSIX+1, MSEVN, 1
XM (2, I)=-DELCx (DBLE (FLOAT(I-MSIX))-0.5D0)
XM(1, 1)=-0.5D0

CONT INUE

Section 8 is for sd
DO 26, I-MSEVN+1{, MEIGHT, 1§
XM(1,1)=-0.5D0+DELCx (DBLE(FLOAT(I-MSEVN))-0.5D0)

M(2,1)=-DW
CONTINUE

Section 9 is for s+
DO 28, I:=-MEIGHT+1, NMAX, 1
XM(2, I)=-DW+DELCx (DBLE(FLOAT(I-MEIGHT))-0.5D0)
XM(1,1)=-0.5D0
CONTINUE

The position matrix is now filled
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Next we must fill the CLNM() matrix.

Set constants

aoOonn

EULER=.5772156649015D0

CONST=2.DO/WK/PI

ETA=-WK«DELC/4&. DO

SP=-CONSTx ( DLOG(ETA)-1.D0 )xETA

SP=SP+( J/WK - CONST*LULER )*ETA
ETA3:=ETAXETA®ETA

SP=SP+ETA3xCONST« ( DLOG(ETA) - 1.D0/3.D0 )/3.D0
SP=SP-ETA3x ( CONSTx (1.DO-EULER) + J/WK )/3.D0
C3:=-WKaWK

The M is down the side of the matrix (row) and refers to the
"OBSERVATION" point. The "N"™ is8 across the top of the matrix
(column) and is the "SOURCE" point.

In appropriate cases, the program must check for self-
patches, i.e. those cages when the midpoint of the
observation point is equal to the midpoint of the source
point,.

THE FIRST MAJOR SECTION HAS M ON A(ALPHA)

EQ A (in the derivation notes)

OO0 ONaa0aanN0nOn

DO 90, M:-1, MONE, 1

N on A(alpha)

[eNeKe!

DO 40, N-{, MONE, {
IF (N .EG. M) THEN
CLNM(M, N):-(0.5D0, 0.D0)
GOTO 40
ENDIF
CLNM(M, N)=CZERO
0 COHTINUE

N ON A(BETA)

COOE

DO 50, N:=MONE+1i, MTWO, {
IF (DABS(XM(i{,M)-XM(1,N)) .LT. DELC/3.D0O) THEN
CLNM(M, N):-=C3%SP
GOTO 50
ENDIF
CLNM(M, N):=C3»PHIO (XM(1,M), XM(2,M), XM(1, N), XM(2, N) )«DELC
0 CONTINUE

N ON 8- (BETA)

aooaoum

DO 60, N-=-MTWO+1, MTHR, 1
CLNM (M, N):-CZERO
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60 CONTINUE

C

C N ON SD(BETA) THROUGH S+ (BETA)
Cc

DO 65, N:=MTHR+1, MFOUR, 1
CLNM(M, N)=~-C3»PHIO(XM(1, M), XM(2, M), XM(1, N), XM(2, N) )»DELC
65 CONTINUE
DO 66, N:=MFOUR+i{, MFIVE, 1{
CLNM (M, N):=CZERO
6 CONTINUE

N ON A(GAMMA)

onoono

DO 70, N:=MFIVE+{, MSIX, 1
IF (DABS(XM({,M)-XM({,N)) .LT. DELC/3.D0) THEN
CLNM(M, N):=CZERO
GOTO 70
ENDIF

CLNM(M, N)=PHIt{X(XM(1, M), XM(2, M), XM(t, N), XM(2, N) )»DELC
70 CONTINUE
c
C N ON S-(GAMMA) THROUGH S+ (GAMMA)
C

DO 80, N:-MSIX+1,6 MSEVN, 1{

CLNM(M, N)-PHI1X(XM(1{, M), XM(2,M), XM(1, N), XM(2, N) )«DELC

80 CONTINUE
DO 85, N:MSEVN+{, NMAX, 1
CLNM(M, N)=PHI{X(XM(1{, M), XM(2,M), XM(4, N), XM(2, N) })*»DELC
85 CONTINUE
90 CONTINUE
C
C Thus ends the section for M on A(alpha)--the next major c
section is8 for M on A(beta)
Cc
C Eq b divided by 2 to get the 1/2 along the diagonal
Cc
DO 130, M:-MONE+1{, MTWO, {

C
C N on A(alpha)
C

DO 100 N-1, MONE, {
IF (DABS(XM(i{,M)-XM({,N)) .LT. DELC/3.D0) THEN
CLNM(M, N):=-SP
GOTO 120
ENDIF
CLNM (M, N)=-PHIO(XM(1{, M), XM(2, M), XM(1, N), XM(2, N) )»DELC
100 CONTINUE
C
C N on A(beta)
Cc
DO 110, N:=-MONE+t, MTWO, {
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IF (N .EQ. M) THEN
CLNM(M, N)=(0.E5D0, 0.D0)

GOTO 110
ENDIF
CLNM (M, N)=CZERO
110 CONTINUE
C
C N on all of the rest of the segments
c

DO 120, N:=-MTwWO+1, NMAX, 1
CLNM (M, N)=CZERO
ico CONTINUE
130 CONTINUE

C
C This next major section takes care of the obsrvtn point, M,
C on s-(beta) through s+ (beta) for the source point, N, on
c A(alpha) and A(beta)
C
Cc
C The next major section is for M on s-(beta) and N on atll
¢ surfaces except for A(alpha) and A(beta)
C
C Eq c
C
DO 210, M:z=MTWO+1i{, MTHR, |
C
C N on A(alpha)
C

DO 140, HN:=-1,MONE, 1
CLNM(M, N):=PHIO(XM(1{, M), XM(2, M), XM(1, N), XM(2, N) )*#DELC

140 CONTINUE
C
C KN on A(beta)
C

DO 150, N:=MONE+1{, MTWO, {

CLNM(M, N)=PHI1Y(XM(1, M), XM(2, M), XM({, N), XM(2, N) )« DELC
150 CONTINUE

C
C N on s-(beta)
C
DO 170, N:=MTWO+i{,MTHR, 1
IF (N .EQ. M) THEN
CLNM(M, N)=(0.5D0, 0.D0)
GOTO 170
ENDIF
CLNM (M, N)=CZERO
170 CONTINUE
C
C N on sd(beta)
C
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DO 180, N:MTHR+1{, MFOUR, 1

CLNM(M, N)=-PHI{Y(XM(1{, M), XM(2, M), XM(1, N), XM(2, N) )«DELC
180 CONTINUE
Cc
C N on s+ (beta)
Cc

DO 190, N:=MFOUR+1i,MFIVE, 1{

CLNM(M, N)=-PHI{X (XM(1, M), XM(2, M), XM(1, N), XM(2, N) )« DELC
190 CONTINUE
Cc
C N on A(gamma) through s+ (gamma)
o

DO 200, N:=MFIVE+{, NMAX, |

CLNM (M, N)=CZERO

200 CONTINUE
210 CONTINUE

(o}
C The next major section is for M on sd(beta)
C
o Eq d
Cc
DO 260, M=MTHR+4{, MFOUR, 1
C
C N on A(alpha)
Cc

DO 141, N-=1, MONE, 1!
CLNM(M, N)=-PHIO (XM(1,M), XM(2, M), XM(1, N), XM(2, N) )»DELC
141 CONTINUE

on A(BETA)

anon
z

DO 151, N:-MONE+t, MTWO, 1
CLNM(M, N)=-PHI{Y(XM(1, M), XM(2, M), XM(1, N), XM(2, N) )x DELC
151 CCKRTINUE

C
C N on s-(beta)
C
DO 220, HN:=:MTWO+{, MTHR, {
CLNM(M, N)=PHI{X (XM(1, M), XM(2, M), XM(1, N), XM(2, N) )*DELC
220 CONTINUE
C
C N on sd(beta)
C
DO 230, N:MTHR+1{, MFOUR, 1

IF (N .EQ. M) THEN
CLNM(M,N)=(-0.5D0, 0.D0)

GOTO 230
ENDIF
CLNM (M, N)=CZERO
230 CONTINUE
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Cc
C N on s+(beta)
C
DO 240, N:=MFOUR+{,MFIVE, {
CLNM(M, N)=-PHI1X(XM({, M), XM(2,M), XM(1, N), XM(2, N) )xDELC
240 CONTINUE

C
C N on A(gamma) through s+ (gamma)
C
DO 250, N:=MFIVE+1{, NMAX, {
CLNM (M, N)=CZERO
250 CONTINUE
260 CONTINUE
C
C The next major section is for M on s+ (beta)
(o
C Eq e
C
DO 310, M=MFOUR+1,MFIVE, 1
C
C N on A(alpha)
C

DO {42, N=1,MONE, 1
CLNM (M, N)=-PHIO(XM(1, M), XM(2, M), XM(1, N), XM(2, N) )*»DELC
142 CONTINUE
Cc
C N on A(BETA)
C
DO 152, N=MONE+{, MTWO, {
CLNM(M, N)=-PHI{Y(XM({, M), XM(2,M), XM(1, N), XM(2, N) )*DELC
152 CONTINUE
o]
C N on s-(beta)

DO 270, N:=MTWO+1, MTHR, 1{
CLNM(M, N):=PHI{X (XM(t1, M), XM(2, M), XM(1, N), XM(2, N) )xDELC
270 CONTINUE

C N on sd(beta)
DO 280, N=MTHR+1{, MFOUR, 1{

CLNM(M, N)-=PHI1Y (XM(1, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
280 CONTINUE

C
C N on s+(beta)
C
DO 290, N:=MFOUR+{,MFIVE,
CLNM(M, N)=CZERO
IF (N .EQ. M) CLNM(M, N)=(-0.5D0, 0.D0)
290 CONTINUE
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C
C N on A(gamma) through s+ (gamma)
C
DO 300, N:-MFIVE+1{, NMAX, 1

CLNM (M, N)=CZERO
300 CONTINUE
310 CONTINUE
C
C All of the elements for the observation point on the "beta®
c segments are now filled.
C
C The next major section is to have M on all the "gamma"®
¢ segments and the source point, N, on the beta segments.
(o]

DO 330, M:-MFIVE+1, NMAX, {
DO 320 N-MONE+1,MFIVE, 1
CLNM (M, N)=CZERO
320 CONTINUE
330 CONTINUE

Cc
C Now we again systematically f£fill M on A(gamma)
Cc
C Eq f
C
DO 390, M:=MFIVE+1i,MSIX, 1
Cc
C N on A(ALPHA)
Cc

DO 340, N=1, MONE, 1
IF(DABS(XM(1,M)-XM({,N)) .LT. DELC/3.D0) THEN
CLNM(M, N)=CZERO
GOTO 340
ENDIF
CLNM(M, N)=PHI{X(XM(1,M), XM(2, M), XM(1, N), XM(2, N) )*DELC
340 CONTINUE
C
C N on s-(beta) and s+ (beta)
C
DC 342, N:=MTWO+ 4!, MTHR, {
CLNM(M, N)--C3»PHIO(XM(1,M), XM(2,M), XM(1,N), XM(2, N) )»DELC
342 CONTINUE
DO 344, N-MFOUR+i{,MFIVE, 1
CLNM(M, N)=C3»PHIO(XM(1,M), XM(2,M), XM(1, N), XM(2, N) )»DELC
344 CONTINUE

C
C N on A(GAMMA)
C
DO 350, N:=MFIVE+{i, MSIX, 1
CLNM (M, N)=CZERO
IF (N .EQ. M) CLNM(M,N)=(-0.5D0, 0.D0)
350 CONTINUE
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C
€C N on s-(gamma)

DO 360, N:=MSIX+i,MSEVN, |
CLNM(M, N)=-PHI1Y(XM(1, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
360 CONTINUE

C N on sd(gamma)

DO 370, N:=-MSEVN+1{, MEIGHT, {
CLNM(M, N)=-PHI1Y(XM(1, M), XM(2,M), XM({, N), XM(2, N) )*DELC
370 CONTINUE

Cc N on s+ (gamma)

DO 380, N:=-MEIGHT+1{, NMAX, 1

CLNM(M, N)=-PHI{Y(XM(1{, M), XM(2,M), XM(1, N), XM(2, N) )xDELC
380 CONTINUE
390 CONTINUE

o
Cc The next section is for M on s-(gamma)
Cc
C Eqeg
Cc
DO 450, M:=-MSIX+1i,MSEVN, {
Cc
C N on A(ALPHA)
Cc

DO 400, N-1,MONE, {
CLNM(M, N)=PHI1Y(XM({, M), XM(2, M), XM({, N), XM(2, N))*DELC
400 CONTINUE
C
C N on A(BETA)
C
DO 402, N=MONE+{, MTWO, {
CLNM (M, N)=C3»PHIO (XM({, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
402 CONTINUE
C
C N on sd(beta)
C
DO 404, N-MTHR+1, MFOUR, 1
CLNM(M, N)=-C3»PHIO (XM(1,M), XM(2,M), XM(1, N), XM(2, N) )*DELC
404 CONTINUE

C N on A(GAMMA)
DO 410, N:=MFIVE+{, MSIX, 1

CLNM(M, N)=PHI1X (XM(1, M), XM(2, M), XM(1, N), XM(2, N) )»DELC
440 CONTINUE
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c ,
C N on s-(gamma)

C
DO 420, N:-MSIX+1,MSEVN, {
CLNM(M, N)=CZERO
IF (N .EQ. M) CLNM(M, N)=(-0.5D0, 0.D0)
420 CONTINUE
C
C N on sd(gamma)
C
DO 430, N:=MSEVN+{, MEIGHT, 1
CLNM(M, N)=PHI{1X (XM(1, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
430 CONTINUE
Cc
C N on s+ (gamma)
(o

DO 440, N:=MEIGHT, NMAX, 1

CLNM(M, N)-PHI{X (XM(1, M), XM(2, M), XM(1, N), XM(2, N} )»DELC
440 CONTINUE
450 CONTINUE

C
C The next section is for M on sd(gamma)
C
C Eqnh
C
DO 500, M:-MSEVN+1{, MEIGHT, |
o]
C N on A(ALPHA)
(o
DO 460, N-=i, MONE, 1
IF (DABS(XM({,M)-XM({,N)) .LT. DELC/3.0D0) THEN
CLNM(M, N):=CZERO
GOTO 460
ENDIF
CLNM(M, N):-PHI{X(XM(1, M), XM(2,M), XM(1{, N), XM(2, N) )*xDELC
460 CONTINUE
Cc
C N on s-(beta)
Cc

DO 462, N:zMTWO+1, MTHR, 1
CLNM(M, N)=C3xPHIO(XM(1, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
462 CONTINUE
C
C N on s+ (beta)
C
DO 464, N:MFOUR+1{,MFIVE, ¢
CLNM(M, N)=--C3»xPHIO(XM(t, M), XM(2,M), XM(1, N), XM(2, N) )*»DELC
464 CONTINUE
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2 O WD U N am 0 - wm aeaw

C
C N on A(gamma) and s-(gamma)
C
DO 470, N:MFIVE+{, MSEVN, 1
CLNM(M, N)=PHI{Y(XM(1,M), XM(2,M), XM({, N), XM(2, N) )»DELC
470 CONTINUE

C
C N on sd{(gamma)
Cc
DO 480, N:=MSEVN+1i, MEIGHT, 1

CLNM(M, N)=CZERO

IF (N .EQ. M) CLNM(M, N)=(~-0.5D0, 0.D0)
480 CONTINUE
C
C N on s+ (gamma)
Cc

DO 490, N:MEIGHT+1, NMAX, 1

CLNM(M, N)=PHI{Y(XM(1,M), XM(2,M), XM(1, N), XM(2, N) })xDELC
490 CONTINUE
500 CONTINUE

C
C The last major sectiont!! Is for M on s+ (gamma)
C
C Eq i
C
DO 550, M=-MEIGHT+1{, NMAX, 1
C
C N on A(ALPHA)
C

DO 510, N:=i, MONE, 1
CLNM(M, N)=-PHI1Y(XM(1, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
510 CONTINUE
C
C N on A(BETA)
Cc
DO 512, HN:-MONE+1{, MTWO, |
CLNM(M, N)=-C3xPHIO (XM(1,M), XM(2, M), XM(1{, N), XM(2, N) )=DELC
512 CONTINUE
Cc
C N on sd(beta)
C
DO 514, N:MTHR+1{, MFOUR, 1
CLNM(M, N)=C3xPHIO(XM({,M), XM(2, M), XM(1, N), XM(2, N) )»DELC
S14 CONTINUE
C
C N on A(gamma) and s-(gamma)
C
DO 520, N:=MFIVE+1, MSEVN, {
CLNM(M, N)=-PHI1X(XM(1, M), XM(2,M), XM(1, N), XM(2, N) )»DELC
520 CONTINUE
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Cc
C N on sd(gamma)
Cc
DO 530, N:-MSEVN+{, MEIGHT, {
CLNM(M, N)=-PHI{X(XM({, M), XM(2, M), XM(1i, N), XM(2, N) )»DELC
530 CONTINUE
C
€C N on s+ (gamma)
c

DO 540, N-MEIGHT+1{, NMAX, 1
CLNM (M, N)=CZERO
IF (N .EQ. M) CLNM(M,N)=(-0.5D0, 0.D0)
540 CONTINUE
550 CONTINUE

The CLNM() matrix is now filled.

eNeNe NN ?]

WRITE (%, %) 'LNM MATRIX FILLED...GOING TO INVERT'

The major matrices are now all filled. The next step is to
invert the CLNM() matrix,.

Using AFIT's IMSL library, one statement will invert CLNM()

aaonoonan

CALL DL2NCG (NMAX, CLNM, 500, CLNM, 500, CWKS, IWKS)
WRITE (%,%) ' MATRIX INVERTED...'

We next fill the "g()" matrix of Known values

non

DO 604, L4=1, IMAX, 1

Q

AL2 is the input angle in degrees

AL2=DBLE(FLOAT (L4 ) )*RSTEP-RSTEP+RFRST
WRITE (%, 888) AL2
888 FORMAT (5X, F6.2)

¢ Convert the input angle to radians
THTI:-AL2xPI/180.D0
c Fill the G() matrix
DO 560, I:=1,MONE, 1
G(I)=CZERO
560 CONTINUE
DO 570, I:=-MONE+1{, MTWO, ¢

G(I)=CKPO(I, THTI)/2.DO
570 CONTINUE
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DO 580, I:=MTWO+1, NMAX, |
G(1)=CZERO
580 CONTINUE

C Multiply the inverted matrix by the input matrix, G{()
C using the IMSL library function.
C

CALL DMCRCR (NMAX, NMAX, CLNM, 500, NMAX, 1, G, 500, NMAX, {, COUT, 500)
c If it's the first input angle, then write out the currents

IF (L4 .EQ. 1) THEN
bo 700, IMi:-1, MONE, 1{
WRITE (%, 860) REAL(COUT(IM1)), DIMAG(COUT (IM1))
WRITE (5, 860) REAL (COUT(IM1)), DIMAG(COUT (IM1))

860 FORMAT (1X, 2E19.12)
700 CONTINUE

ENDIF

WRITE(S,»)'

WRITE (%, %)’ '

Calculate the RCS using Eq. 121 in the Thesis
for each output angle from -90 to 90

aoOaaaa

DO 600, L=-90,90,1
THTR:=DBLE (FLOAT (L) )xPI/180.D0
CSUM:=0.DO
DO 610, M-=1, MONE, 1§
CSUM=CSUM+COUT (M)xCDEXP (-JxWKxXM (1, M)*xDSIN{(THTR) )
610 CONTINUE
IF (L .NE. 0) THEN
CSUM=CSUMxDSIN(WK»DELCx0.5DOxDSIN(THTR) )/ (WK¥DSIN(THTR))
ENDIF
IF (L .EQ. 0) THEN
CSUM:-CSUMxDELC/2.D0O

ENDIF

RCS (L4, L)=4.D0OxCDABS (CSUM)*CDABS (CSUM)
600 CONTINUE
601 CONTINUE

Cc

¢ Output the RCS data
c
DO 603, L=-90,90,1
WRITE (3, 868) L, RCS({,L), RCS(2,L),RCS(3,L), RCS(4,L)
868 FORMAT (14, 4E19.12)
603 CONTINUE
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ao0ooaonan oaonoann

O00n0n

Close the output file and go back for the next K and d

CLOSE(UNIT=3)
CONTINUE
CLOSE (UNIT=2)
CLOSE(UNIT=5)
CLOSE(UNIT:=4)
END

CKPO is the function that gives the physical optics current
across the aperture. Thisg 18 actually the H field incident
to the aperture.

COMPLEX®x16 FUNCTION CKPO(M, THTI)

IMPLICIT DOUBLE PRECISION A,B,D,E,F,H,0,Q,R, T, UV, W, X, Y Z
IMPLICIT COMPLEXxt6 C, J, G, P

COMMON J, XM(1:2, 1:500), WK, DELC
CKPO=2.DO*CDEXP(-JxWKx (XM(1, M)xDSIN(THTI)))

RETURN

END

PHIO is the function that gives the Hankle function of the
first Kind of order 0 for K times r. It is multiplied by
J/74 to give the Green’s function in two dimensions.

COMPLEXx16 FUNCTION PHIO (X1, Yi, X2, Y2)

IMPLICIT DOUBLE PRECISION A,B,D,E,F,H,0,Q, R, T,U, V,W, X, Y, Z
IMPLICIT COMPLEX%16 C,J, G, P

COMMON J, XM(1: 2, 1: 500), WK, DELC

WKR:=WK* DSQRT ( (X1-X2)x (X1-X2)+ (Y1-Y2)x (Y1-Y2))

PHIO:= (DBSJO (WKR)+J*DBSYO (WKR) )¥Jx0.25D0

RETURN

END

PHI1X gives the x component of the gradient of PHIO

COMPLEX» 16 FUNCTION PHI{X (X1, Y4, X2,Y2)

IMPLICIT DOUBLE PRECISION A,B,D,E,F,H,0,Q,R, T, U,V W,X,Y, 2
IMPLICIT COMPLEXxi6 C,J, G, P

COMMON J, XM(1:2, t: 500), WK, DELC

RzDSQRT ( (X{-X2)» (X1-X2)+ (Y1-Y2 )% (Y1-Y2))

WKR:=WKxR
PHI1X=Jx0.25D0%xWKx (X1-X2 )% (DBSJ1 (WKR)+J#DBSY1 (WKR) )/R
RETURN

END
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¢ PHILY gives the y component of the gradient of PHIO

COMPLEX%16 FUNCTION PHI1Y (X1, Y1, X2,Y2)

IMPLICIT DOUBLE PRECISION A,B,D,E,F,HO0,QR, T, UV, WX,Y,Z
IMPLICIT COMPLEXx16 C,J,G, P

COMMON J, XM(1:2, 1:500), WK, DELC

R=DSQRT ( (X1-X2 )% (X1-X2)+ (Y1-Y2 )% (Yi1-Y2))

WKR:-WKxR
PHI1Y=Jx0.25D0*WKx (Y1-Y2 )x (DBSJ1 (WKR)+JxDBSY1 (WKR))/R
] RETURN
END
C
C

-




Appendix B: Numerically Generated Data For the Test Case

The plots contained

in this appendix were obtained from

the computer program in Appendix A. The program is discussed

in Chapter 7 and some of the results are analyzed in the

results section, Chapter 8.
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Figure 17. Bistatic RCS of a Rectangular Cavity With a
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Figure 21. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 0.1, a Cavity Depth, d, of
1.0, and Incident Plane Waves with 8; = 22.59, 45.0° and 67.59°.
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Figure 26. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 1.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With 6; = 00,
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Figure 27. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 1.0, a Cavity Depth, d, of
0.25, and Incident Plane Waves with 6; = 22.59, 45.0° and
67.59.
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Figure 28. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 1.0, a Cavity Depth, d, of
1.0, and an Incident Plane Wave With 6; = 0°.
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Figure 29. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 1.0, a Cavity Depth, d, of
8.0, and an Incident Plane Wave With 6; = 0°.
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Figure 30. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, Kk, Equal to 1.0, a Cavity Depth, d, of
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122




k=10 d=4.0
6; = 22.5° 459, & 67.5°
L X

9.8
9.4 -
9.3
9.2 +

22.%°

9.1
9

s A A5°

8.6
a7 -

e Gl.
a8
0.4 -
83 -
8.2

LAY

a1 | SN SIS SERSE Busute Eumn SR Samm | ND JUNEE SRSn SN SRS SRS S S |
-0 -7 -80 -0 -10 10 0 80 7 90

Bistatic Scattering Angle (degrees)

Figure 31. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, Kk, Equal to 1.0, a Cavity Depth, d, of
4.0, and Incident Plane Waves with 68; = 22.5° 45.0° and 67.59,
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Figure 32. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With 6; = 0°.
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Figureias. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 10.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With 0; = 22.50.
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Figure 34, Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, kK, Equal to 10.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With 0; = 459,
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Figure 35. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, K, Equal to 10.0, a Cavity Depth, d, of
0.25, and an Incident Plane Wave With 6; = 22.5°9 45° and
67.59,
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Figure 36. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of
4.0, and an Incident Plane Wave With 6; = 22.5° 450, and
67.50.
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Figure 37. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of
4,0, and an Incident Plane Wave With 6; = 0°.
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Figure 38. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of
4.0, and an Incident Plane Wave With 8; = 22.5°.
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Figure 39. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, Kk, Equal to 10.0, a Cavity Depth, d, of
4.0, and an Incident Plane Wave With 6; = 45.0°,.
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Figure 40. Bistatic RCS of a Rectangular Cavity With a
Normalized Wave Number, k, Equal to 10.0, a Cavity Depth, d, of
1.0, and an Incident Plane Wave With 6; = 22.5° 459, and
67.59.
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Figure 43. Bistatic RCS of a Rectangular Cavity With a
NHormalized Wave Number, K, Equal to 10.0, a Cavity Depth, d,

1.0, and an Incident Plane Wave with 6; = 45.0°.
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Figure 44, Monostatic RCS at 0° with Varying Depth and k=1.0
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Figure 45,
Reciprocity

Chonnel Depth, d

Bistatic RCS at 09/45° with Varying Depth and K=1.0
1s demonstrated again.
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Monostatic RCS at 0° with Varying Depth and k=6.0
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Monostatic RCS at 459 with Varying Depth and k:=6.0
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Appendix C: A Model for Obtaining Measurements

A scatterer has been designed for a physical problem
related to the example problem attacKed in this thesis.
Perhaps a follow-on thesis could concentrate on the
measurements.

Measuring the fields scattered from the channel is not a
trivial matter. The plane on which the incident fields impinge
has been assumed, thus far, to be infinite. Such an infinite
plane that is also perfectly conducting cannot be constructed.
However, some approximations can be made to at least simplify
those problems. Further, proper calibrations while maKing the
measurements will also help create accurate measurements.

If the plane containing the channel to be measured cannot
be infinite, then it should be very large; but how large? 1If
the edges of the plane are in the far field, then it should be
sufficiently large enough for the incident wave to "see" a
cavity in an "infinite" plane. The far field is loosely

defined as a distance, r, such that (22:21)

cur >> A

For most practical applications, the far field begins at about
10\ from the scatterer (9). In this problem, the scatterer
i8 the cavity. If the edges of the plane were at least 10\

from the cavity center, they may be considered to be infinite.
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The assumption of infinite conductivity needs to be
considered when makKing measurements. Though perfect conductors
do exist (i.e. superconductors), it is not yet practical to use
them in most applications. A good approximation to a perfect
conductor for problems of this type woiuld be any "good"
conductor. Aluminum is a good conductor (11). For measurement
purposes it can be considered to be a PEC (9). A plane and
cavity made of aluminum can therefore be approximated as
perfect conductors.

When making the measurements, the system needs to be
calibrated to nullify anomalies that may exist within the
system (such ag transmitter/receiver peculiarities, mounting
scatter, etc.). If the system were calibrated using the above
plane without the cavity, then most of the edge effects of the
plane itself can be subtracted from the measurements along with
the system anomalies. This will mostly leave only measurements
of the fields due to the cavity alon«. This is the same
quantity, the integral in Eq (76), that has been calculated and
plotted in the earlier sections of this thesis.

Using the described target and the described technique, it
should be possible to duplicate the data plotted in the last
section. The target has been designed and built and is the
property of the Air Force Institute of Technology; to date, no
measurements have been made.

In addition to a very large aluminum plane, an adjustable

channel width and depth is also desired. Using all of the
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above information, a drawing of the target that has been
designed and built is given in Figure 49. The measurements
given were derived assuming a measuring frequency between 8 GHz
and 12.4 GHz but the target may be used at other frequencies

due to its adjustability.

3a"

|
o

51"

Figure 49. Target Designed to Produce Measurements for
Comparison With the Calculated Data. The Target is Made of
Aluminum and has Adjustable Rectangular Cavity Width and Depth.
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Abstract
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